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The Hoyle - Narlikar 

of Gravitation 

1. Introduction 

The success of Maxwell's equations has led to 

electrodynamics being normally formulated in terms of fields 

that have decrees of freedom independent of the in 

them . However , Gauss suggested tnat an 

t :1eory in \'Jhich the action travelled at a finite velocity 

might be possible . This i dea was developed by 11heeler and 

Feynman ( 1 , 2 ) who derived their theory from an action-principle 

tha·t involved only direct interactions between pairs of par·t-

icles . A feature of this theory was that the ' pseudo '-fields 

int roduced are the half- retarded plus half-advanced fields 

claculated from bhe worl d - lines of the particles . However, 

··! :1eeler and JJ'eynman , and , in a different v-1a;; , Ho,-artli (3) 

were able to show that, provided certain cosmolo3ical 

condit ions were satisfied, these field s could combine to 

6ive the observed field. Hoyle and Narlikar ( 4 ) extended 

·tt1eory to general space- t;imes and obtained similar theories 

for thE:ir ' C'-field (5)and for the gravi·tational f:fueld (G). 

It is with these theories that this chapter is concerned. 

- -
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It \'Jill bG . ..;ho.:n that in an exp;.11ding universe t·!1e 

advanced fields are infinite, and the retarded fields finite. 

This is because, unlike electric charges, all Toasses h[tVA tho 
• same ...:;i.;;;n . 

2. The Boundary Condition 

rloyle and Narlikar derive their theory from the 

action: 
• 

wnere the integration is over the world-lines of oarticles 

a. b. 
I 

• • • In this expression is a Green function . 

that satisfies ·the wave equation: 

--
l(( . /) £ x. x 

/-3 

wl1ere j is the dei:;erminant of 3 .j • -=>inc:e double sum 

in the action A is symcetrical between all pairs of 

pi:irticles a.,b , or1ly thc..t part of 4·(0...b) that is 

symmetrical betv.reen c.... and b v1ill contribute to the action 

i.e. the action can be writ·ten 

A 
\vhere _ b) 

G
·lt 

'rhus must be the 
()"' ..!.. 
'1 :: be i.,rrittien: 

time- symmetric 

q re-t' -r 1 q o..dv 
Green function, and can 

v1here 



are the r3tarded adval1ced Green f·L1nctions. 

Ey that the action be stationary under variations 

of the , Hoyle and Narlikar obtain the field- equations: 

[ £. i t {Vl,lo.)( x) M(b) ( x )] (r<il< - i g"K R) 
0.. -:i: b 

-
::: - ft,K 

<: < _!_ [ (a.){ (b) r (b) ) G) ( (a) ( b) 
-r c_ 3 - /'II. 9 ' fVl, - f'rL. ·t a(. fYl, J /l1. . o..fb vk. } r )i, ; r\ 

- (o.);r (b)J 
m M., > , 

w11ere . Ho·,;ever, a.s a 

consequence of the particular choice of Green function, the 

contraction of the field-equations is satisfied identicall : . 

'1.'here a ::c thus only 9 equations for the 10 comnonents of Cr · '. ,J 

and t;hc S,',rstem is indeterminate . 
{o..) 

Narlikar therefore im')OSe Z rrt. = =cor:st., fvt0 : .. oyle and 

,As the tenth equation. By then the 'smooth- fluid' 
. t. th t . b tt · L < ( o.) (b) 2 approxima ion' a l.S y pu ing L L_ (V\, m JI.- /11.. a...:tb CJ) 

they obtain the Einstein field- equations: 
_.!_R_ .) 

(, {IA..O ._v, l gi-1'\ : -
- / t, K 

. . • 

There is an important difference , ho\vevor, bet\veen these 

field-equations in the direct - particle ir1teraction tc.eory 

and ii1 tl1e usual general tneory of re L&.tivity . In the 
seneral tneory of relativity, any metric that satisfies t he 



the field-equations is admissible, but in the 

interaction theory only solutions of the field- equations 

are admissible that satisfy t he additional requirement : 

.. -

--
(o..) £ /VL (x) = 

This requirement is highly restrictive; it will be shown 

it is not satisfied for the cosmological solutions of 

the binstein field- equations, and it appears it 

·be satisfied for any mod.els of tl1e univer:;e tho.t eitl1er 
• 

contain an infinite amount of matte1· or undergo infinite 
• expansion . 

The difficulty is similar to that in 

:r-rev1tonian t_icory \vhen it is recognized that the universe 

might be infinite . 

The Newtonian potential obeys equation: 

D 1 : --"f 
'·"'he re is the density. 

' 



In an infinite staLic wo1Jld be . since 
the source has the same difficulty was 
ved v1hen it v1as reolized the uni versP. ·.-1as expa11d.in;;, since 
in .:tn exoanding universe the retarded solution of the above 

is finite by a sort of ' red- shift ' 

advanced solution will be infinite by a ' blue- shift ' effect . 
'l'his is unimportant in Ne\vtonian theory, since one i:..; free 

to choose vhe solution of the equation and so ms.y icnore ·the 
infinite advanced solution and take simply the finite 
retarded solution . 

in the direct - particle interaction tQeory the 

rn, - field satisfies the equation: 

O m +- f R. M = N 

where N is the density of \·.;orld- lines of particles . As in 

the Newtonian case, one may expect that the effect of the 
ex1)a11sion of the universe will be to mc:1ke ·the retarded solution 
finite and the advanced solu·tion infinite . However, . one is 
now not free to choose the finite retarded solution, for the 
equation is derived from a direct - particle interaction action-
principle symmetric between pairs of particles , and one must 

choose for fV\.. half the sum of the retarded and advanced 
solutions. Vie would expect t •J.is to be infinite , and this is 
shown to be so in the next section . 



j . 'fhe Gosmolos;ical i.:),olu-cions 

'l1he .rtobertson- \'/alker cosmologic<:'l.l 1netrics ho.ve the 

forin 

• - . 

Since t.1ey are conformalJ.y flat, one caoose coordinates 

in \vhich tr.Ley become 
2 :z i :L J. . Q 

cls 2 
-

; J1-< 7o..b dx°'- cLx 

, 

•..v t1ere io the flat - space metric tensor and 

--- - . c 7) 
/ I ·t i K ( 't r-f )iJ [I ii ( - ( 

For example, for the Sitter • universe 

k ;: 0 
/ 

R(l)-:: c 
T ( ) 'L G .;..:_ "f. <. rD T I 

__ Q 
("'C= JJt 

2 -3 

For the steady- state (de Sitter) • universe 
K :. 0/ Rt.t); . ..t 

e1 
(-o0.<.t:"Lo0) 

• 



R ·- (-- ·- I oO o) - - L. - <. L_ 
:--'!'-[, 

(i: 
-(: 

F - f . ·- Te 7) - -

'I.1he Green function c;* b) obeys t he equation 

t = b) 
;-:__ 3 

t his it follows that 
I 

J2'-i 

If we let 52.-t 5 
' 

dX dx.b 
JL-'iJ 4 (a,b) 

.._ , 
v :1e11 

--

This is s imply the flat-s-oace Gr -.. en function equation , a nc1 

• ne11c e 
r *( 't. 0 . 'l f ) -'1 ,, ) l -

Jl-'?c,) c.) 
If - J2. ( ti)f 

is given by 

·=-

g Cr) f' --c-L - vc, ) · 
J2. (. "C )._ J f r J 

dx: \t = I ( ·r lh.0-dv: J_ 
I 

The 1
/V\. ··fie l d 

universe), 

without creation (e.g. 
N ·- 3 

/1., . ,, 

the Einstein-de Bitter lt'or uni verses 
-- ,., const . .e or 



con.:;;t. 

W\Gre the integr ation over the fu t ure light cone . This 

normally be infinite in an expandir13 :.ni verse , e 2-: . in 

0itter universe. 

-2 oO 

M. o...).; ( '-f,) '1: ( f - vc ) cL 1 - .2 - I l I -
I 

... " /., I 

--
In the s't:;eady- state • universe 

3 -l 0 ·- ) cL c:.z . - I ( '1;( ) - I n. ( ,/\ l 
/ll\... CL J ./. ·- l- -- - 1. 

, 
l T. -r. I 

I 

--
• 

. By on the other hand , \ve have 

where the integration is over the past light cone. This will 



normally be finite , e . g . in the univers= 

-2 f. ( 
'_ /?_, t'.2.. -'L . 'L ) c{ '"'L ::. ' -(L 

-Q. I ' I 1. 
0 

J. I T 

while in the steady- state universe 

( 't, ) 
-1 ·r -- I 

IV1.. - - I n. I -{; '"f ·-cO l;i. I 

i ·-:i. - (L J - 2.. -
Thus i t cun be seen that the solution ll'\.. =- consi::; . of th0 

equation 

is not , in a cosmological metric , the half-advanced plus 

half- retar·ded solution since this would be infinite . In fact, 

in the case of the Einntein- de and steady-state metrics, 

it is the pure retarded solution . 

4 . 'C '-b'ield 

Hoyle and ]arlikar derive their direct - particle 

interaction theory of the 'C' - field from the action 



where tae suffixes Q h refer to diffqrentiation of ·'°' I (o..,b) on the world- lines of l'-1.. 1 6 
......... G is a Gr een function obeying the equation 

DG(X,X') 

define tl1e ' C' - field by 

C(x) = z 
• 

'""' & G (x)°-) clQ ) 
.I 0.... 

and the by 

1.rhen 

• z_ a4L b)cLb 
o S' e ( X, 1 ) J '< ( lj ) J K j -3 cl_ 'X 4J c &-J 

oc --
- I'\ 

J JK 

tl1us .:>ee that the sources of the 1 C' - field. are the plc.ces 

matter is created or destroyed . 

i1.s in the case of the ' M, '-field , the Green func·t; i on 

must be timc- S;)7 mmetric , that is 

q ( °', b) --
I -

, 



hoyle and Narl ikar claim thut if action of the 

' C' - fielQ is included al vii th the action of tl1e ' '-field, 

a univerue \1ill be obtained that approximates to th8 3teady-

state universe on a large scale althOUBh tncre may be local 

irrecularities. In this universe , the value of C will be 

f i:ni 1..ie and its gradient time- like and of unit ma5nit;ude . 

Given this universe, we may check it for consistency 

claculatin6 the and retarded ' C'-fields and 

if their sum is finite. shall not do tl1is directly 

will that the advanced field is infinite while the 

ded field is finite . 

Consj.der a region in space- time bounded by a three-

dirnensional space- like hypersurface ]) at the present time, 

und t(1e past light cone £.. of some point P to the futl1re 

9f j) • 

By Gauss's theorem 

I/ 
w C /-3 dx 

Let the advanced field 

C l 
Then and 

pro(luced by sources v1i thin t/ be C 1 

will be zero on , and hence 

• 



- 1-\ 
.dut J 

}K 

.. -
0 

is the rate of creation of matter= ft,. (canst . ) 

the steady- state universe , and hence 

-- rv V. 

• in 

11.S the point ? is taken further into the future , the volume 

of the re6ionV to infinity . 
hyp.ersurface J) tends to a finite 

effects . the gradient 

Hov1ever, the area of tlJ.e 

limit 
d c I 

dn- must be infinite. 

owing to horizon 

A similar calculation shows the gradient of the retarded 

field to be finite . '.I.'heir sums cannot therefore :-·iv;e the 

field of unit gradient required by the I • v neor;,r . 

It io worth noting that this result was obtained 

without assumptions of distribution of matter or 

of conf flatness. 



5. Conclusion 

It iJ one of the weaknesses of the Einstein theory of 

relativity that &lthough it furnishes field equations it does 

not provide bour1dary conditions for them. 'rhus it does not 

Give a unique model for the universe but allows a whole series 

of rnoa.el:::> . Clearly a theory th;:,t provided boundary conc...L "Gior"s 

and. t.1ut:> re.stricted the possible solutions \..,rould l)e VP>r\r y ., 

attractive. The Hoyle- Narlikar 
I 

l."'equirement that m = ;:- 't 

t11eory does 
J._ M ) 

just .. t(the 

). O...d ./ 
. 
l.S 

equivalent to a boundary condition) . Unfortunutely, as .. e 

have seen above , this condition excludes th&t 

seem 1,0 correspond to the actual universe , namely the 

models. 

calculations given above have considered the . 

as being .f'illP.d \•1ith a 11niform distribution of m<:.:.tter. '-."his 

is if we are able to make the 'smooth-fluid ' 

approximation to obtain the equations. 

if this approximation is invalid, it cannot be said that the 

tneory yields the Ei nstein equations. 

It mi.5ht possibly be that local irre_;ularities co11ld :nal{e 

1'Yta..dV finite , but this has certainly not been demonstrated 

and seems unlikely in vievJ of the fc..\ct th1 ... t , in t11e 

Narlikar direct - particle interaction theory of their 'C 1 -field, 



which is derived from a very similar action- principle, it can 

be shown without assuming a smooth distribution that the 

advanced 1 C ' field \-.rill be infinite in an expandin3 uni verse 

'IJi th crea·t ion . 
r eason that it is possible to f ormulate a direct-

particle interaction theory of e lectrodynaffiics that does 

encounter this difficulty mf havin3 the advcincea solution 

infinite is that in electrodyncJJics tl1ere are eo.ual n11mbers 

of so\1rces of nositive and negative sie;n . Their fi.elds cu.r 

each other out and the total field can be zero apart 

fron1 local irregularities . This sug:est that i:.. 1)ossible •:Jay 

to save the Hoyle- Narlikar theory would be to allow masses 0·1. 

• s ign . The action would be both positive and negative 

G b) clo. cL b 

are gravitational to 

electric char ·es . Particles of positive q,. in a r>osit i ve 

1 fi1 ' -field und particles of negut ive Cj_ in a ne .ra·t i ve 1 rr1 ....., 
I -

fie ld W()\lld h&ve the noi ... mal tational t;t'i.:.,:.t is, 

·t11e;f would have positive gravitational and inertial masses. 

' 



A particle of 1 in a positive ' M '-field •:J(;u ld 

s·till J'ol lov1 a geodesic. Therefore it wo11ld be 0.tt;racted :)y 

a particle of positive • Its own gravi tat:;ional effect 

howeve r would be to repel all other particles . Thus it would 

the properties of the negative mas J described by Bondi(e) 

tt1at i s , negative gravitational 1110.so and negative inertial 

mass . 

3ince tnere does not seem to be any matter having 

toese properties in our region of space ( v111ere M JL coi:.st . / 0 ) 
there must clearly be separat i on on a very larc e scale . 

would not be possible to identify part i cles of 

'-'-.l. ,, 

with ant imat t er , since i t is known that antimat·t er has positive 

inertial mass . liwever , the i ntroduction of nesative masses 

would probably raise more difficulties than it wuld solve . 

' 
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CH\P':'ER 2 

PERTURBAT IONS 
1 • Introduction -- .-.---

Perturbations of a spatially isotropic and homogeneous expanding 

universe have been investigated in a Newtonic'Jl approximation by 

Bonnor(1 ) and relativistically by Lifshitz( 2), Liftshitz and 

Khalatnikov(3) and Irvine(4). Their method was to consider small 

variations of the metric tensor. This has the disadvantage that the 

metric tensor is not a physically significant quantity, since one 

cannot directly measure it, but only its second derivatives. It is 

thus not obvious what the physical interpretation of a given 

perturbation of the metric is . Indeed it need have no physical 

significance at all, but merely correspond to a coordinate trans-

formation. Instead it seerns preferable to deal in terms of' 

perturbations of the physically significant quantity, the curvature . 

2. Notation 

Space-time is represented as a four- dimensional Riemannian space 

with metric tensor gab of signature +2 . Covariant differentiation 

in this space is indicated by a semi - colon. Square brackets around 

indices indicate antisymmetrisation and round brackets symmetrisation. 

The conventions for the Riemann and Ricci tensors are: -

1/91.b cet is the alternating tensor. 

Units are such that k the gravitational constant and c, the speed of 

l ight are one . Ul'\I VtlC>' I Y 

CAMBRIDGE 



3. The 

We assume the Einstein equations: 

where Tab is the energy momentum tensor of matter. We will assume 

that the matter consists of a perfect fluid. Then, 

where Ua is the of the fluid, U Ua 
a -- - 1 : 

is the density . 

ft is the pressure 

h G\b : Sob t Ua.. l..tb is the projection operator 

into the hyperplane orthogonal t o U · a . 

hAb uh ::0, 

We decompose the gradient of the velocity vector Ua as 
• 

UQ.;b:. Wob-+ <5'"o.b + t 8 - Uc.. Ub 

where is the acceleration, 

is the expansion, 

hC. hJ I <r'o. b IA ( c j <l) d. b - -S is the shear, 

wo.b u [c;.d] h:. l1t is the rotation of the 

flow lines U • We define the. rotation vector a Wo. as 
I c.ol b 

Wo. -:;. -;: 7}o.bc.cl W Ll • 
We may decompose the Riemann tensor 

Rab E1..nd t11e •:.'cyl tensor C abcd : 

R abcd into the Ricci tensor 

R cbco( = - 9q(ct Rc.J I:;, - b[c - R;3 'JG\.[,5olJb ) 

7 
u C ·. b'o. '==' 0 -::. Co.[ bed] • 



Cabcd is that part of the curvature that is not determined locally by 

the matter. It may thus be taken as representing the free gravit-

ational field (Jordan, Ehlers and Kundt ( 5)). 'Ne may decompose it 

into its "electric" and "magnetic 11 components. 

' 

C cd _ 
o.b - 8 u t tc .-· . .,tJ cC'- Ed] 

[o.. b] \.A - 4- O(o.. !,) ' 

) , 

E Q... -=-- H a. o. = o 
(). 

) 

E ab each have five independent components. 

We regard the Bianchi identities, 

as field equations for the free gravitational field. 

') 

Then (Kundt and Trfimper,C 6)). 



Using the decompositions given above, we may write these in a form 

analogous to the Maxwell equations. 

1. b E. hcd n (j. bc;ol + H b b c Lide \ h b l 
o.h W - '? U <Y e n = '5" l'A }"-;" J 

( 1 ) 

' 
(2) 

- E c(o. gb)c - Y/ o c.c:le YJ Uc uP a- c:l'f E e.r 

• d • t(fi + 2. H Q YJ bcc=I. e Uc ue - - () ob (3) - 'J 

• 
L H c:o..b - h (o. .f ') 'b) c d. e c. E Hott. 8 H (o. w b)c. \). -f + ..-

• 
.. H c. (P- o-b)c. - "1 p.r; cl e Y) b p q ,. 1,.4. c. u p <Y cl H ... (4) .. 

2H("J '". t- o. he. ,,I e U. tA e - 0 - • 

where .1. indicates projection by hab orthogonal to Ua. 

( (7)) c.f. Trfunper, • 

The contracted B·ianchi identities give , 

T ·b 
- cob' -= 0 ) 

fa+ =. 0 > (5) 

(f.+ Gl 0 + r.; 'p h b a :: 0 (6) 

The definitien of the Riemann tensor is, 

U o.;[bc.] = 2. 'R Ol f' be. uP • 

Using the decompositions as above we may obtain what may be regarded 

as 11equations of motion" ,-



• 2. '2. I n2. e = zw -2a- -3l7 + 

•. 

.. .. ·' 

\Vhere 2. 06 2 W =: W ab W ' 

) 

' 

' 

\/Ve also obtain \\rr1at may be regarded as eq_uati ons of constraint. 

) 

L-t n c.( d;e = - n (o ·1b)c.cJ.e u \.. wf • 

(7) 

(8) 

(9) 

( 1 0) 

( 11 ) 

( 1 2) 

consider perturbations or a universe that in the undisturbed state 

in conformally flat, that is 

0abcd 0 • 

By equations (1) - (3), this implies, 

• 



If \Ve assume an equation of state of the form, e. it"\. ( , 
1:Jien by ( 6) , ( 1 0) , .. • 

:::. o = Uo. 

This implies that the universe is spatially homogeneous and isotropic 

since there is no direction defined in the 3- space orthogonal to Ua. 

In this universe we consider small perturbations of the motion 

of tl1e fluid and of the '.ifeyl tensore 1Ne neglect products of small 

quantities and perform derivatives with respect to the undisturbed 

metric. Since all the quantities we are interested in with the 

exception of the scalars, µ, e have unperturbed value zero, we 

avoid perturbations that merely represent coordinate transformation 

and have no physical significance. 

To the first order the equations (1) - (4) and (7) - (9) are 

E j b -
ci-b -

I h b -s. 0 f;b 

• r- b+E L8t-- c;a.. 0 r,:> 

• e I e2. - + 3 - .. -
• • Q. 

lA. .I 
Q 

Ll0-b 8 + 'l. - - -- 3 

' 

) 

) 

' 

J 

( 13) 

( 14) 

( 1 5) 

( 1 6) 

( 17) 

( 1 8) 

( 19) 



From these we see. that perturbations of rotation or of Eab or Hab do 

not produce perturbations of the expansion or the density. Nor do 

perturbations of Eab and Hab produce rotational perturbations. 

4. The Undisturbed Metric - - l"i····---
Since in the unperturbed state the rotation and acceleration 

are zero, Ua must be hypersurface orthogonal. 

' 

where measure, the proper time along the world lines. As the 

surfaces 't = constant are homogeneous and isotropic they must be 

3-surfaces of constant curvature. Therefore the metric can be 

written, 

where 

1.-.'c define t by, 

then 

In this metric, 

' .. 
•• 

, 
d y 1 is the l1ne element of a space of 

zero or unit positive or negative curvature. 

d. t I 
clT :0. TI , 

• 

. 
' 

(prime denotes differentiatio.n- with respect to t ) 



Then, by (5), (7) 

(20) 

•• 
·3 G -:. - ±- (f 1" ; ft) 

(2 • ( 21 ) 

If vve know the relation betvveen µ and fi. , 'vve may determine (l_ 

\Ve will consider the tv10 extreme cases, 1'"\. = 0 (dust) and }1 % 
(radiation). .Any physical situation should lie between these. 

For 'b ;:: 0 

By (20), rl.\ = c onst • 

n 

n 

• 
• • 

• • • 

--

•• ;, r1 -f'(\ Q 

• I 1.. D'2,- =: E M rt 

(a) For E 0 9 

-
' (cos E: t 2 r--

(b) For T;' - o, t:.1 -
M tz. 
I '2. ) 

:. 0 
J 

) 
E = const. 

1 ) - 1t -
i -

l --

. ) t -· t ; - ' 

f'I\ t3 • 
36 ' 

E represents the energy (kinet·ic + potential) per unit mass. 

If it is non-negative the universe will expand indefinitely, other-

wtse it irvill eventually con tract again. 

• 



By tl1e Gauss Codazzi equations '"R; the curvature of the 

bypersurface 'l = const. is 
J 

If E )>O 
) R - -

[=O ) 

E <O ) 

F'or .?\ = )J./"S 
..,.__.....,:/ ---- --

•• 

b 
-2 . n . 
...t .c.: 

• 

- t-n 
3 (2 --

)l. 
j-J· -::-

(a) For > o, 
I t (1 'L -- -E ) 

(b) For E - o, -
,..,.. 

t L -, 
) 

( c) Fo1"' E 0 

--

--

) 

• 
:> 

) 

) 

) 

' -E 

I -2. 

- 2. EM 
-

3 
M -= E 

-3 /Y\ ,:::: -

• 
• • 

• 

. '\.. 

3 (2 -
fY\ 

• 

I -0. ... -

( C.c•S·h t - I) .,.. R ---
) 

t 2. 
'. 

• 
<( -<. -) 

I -

' -- S . .i. YI t - (c...ost -1) - E ) F .) -
5. RotFttional Pert11rb at ions _,,, __ , ···--.-- ·- ... ·-·.------ .. ·------·_..-=-•=ire-.-. 

By (6) 

E 

(:, 
0.'l.. 

0 

• 
• , 

, 
] 



For 

For 1ri.-:. 1 

• •• 

) 

) 

.. . -

• 
w Q..b 

--

• 
w --

--

w --

• 

(&),., 
(2 '2. 

et e I - w +--'+ ) 

f' 
I e --w '} ) 

Thus rotation dies away as the universe expands. This is in fact a 

statement of the conservation of angular momentum in an expanding 
• universe. 

6. Perturbations of__Densi.!il. 

For fl·= 0 we have the equations, 
• -t-8 fJ. --
• I 'a I fJ - -Te --r: fA -

These involve no spatial derivatives. Thus the behaviour of one 

region is unaffected by tl1e behaviour of another. PeI'turbations 
' will consist in some regions having slightly higl1er or lovrrer values 

of E than the average. If the untverse as wh "1..e has a value of E 

greater than zero, a small perturbation will till have E greater 

than n.nd will continue to expand. It will not cor.trsct to 



form a galaxy. If the universe has a value of E le8s than zero, a 

small perturbation can contract. However it will only begin 

contracting at a time 8 1" earlier than the wl1ole universe begins 

contracting, \l\There 
--· 

.. 

'(:" 
0 

is the time at vvl1ich the wl1ole m1iverse begins contracting. 

There is only any real instability vvhen E = o. This case is of 

measure zero relative to all the possible values E can have . 

Ho-Yrever this cannot really be used as an arguement to dismiss it 

as there might be some reason why the universe should have E = o. 
F·or a region with energy - cE , in a universe with E = 0 

r"l - ( t'l.- t't t ... ) >l - 4 12 

I T = 1'1. se 

f- ::: (ti E ) ----· '""t'" T • • • 
2 

For L: = O, 

Thus the pe rturbation grows only as 'l'3 . This is not fast enough 

to produce galaxies from statistical fluctuations even these 

could occt1r. Hovv0ver 9 since an evolutionary universe has a partic1.e 

horizon (Rindler(B) 9 Penrosc(9 )) different parts do not communicate 

in the early stages . This makes it ov0n more difficult for 

statistical fluctuations to occur over a rc;g: -.n until light had time 

to cross th0 region. 



- --
• I i_ • ,,., n _o ,,,,: ... 

0 = - .., 0 - )A + V'- ... ' 

f .. s a perturbation cannot contract unlesG it has a negative 

value of E. The action of the pressure forces Iilake it still more 

difficult for it to contract . Eliminating 6, 
•• 

. . . I o.b .. • 
l-l 0..: 0. -= t,..l <>-i b 1 + u 0.. I.A 

to our approximation. 

I OA.\7 I b :;:/ 
1 Ve I o. v b is tl1.e Laplacian in the hypersurface c-r = constant. 

represent the perturbatior1 as a sum of eigenfunctions S(n) of 

this operator, v1i1ere, S ( ->) <:. 
•cU. -;-.O , 

- -- Yt.7... s {f.o) 
Q'2. 

These eigenfunctions will be hyperspherical and pseudohyperspherical 

l'1armonics in cases (c) and (a) respectively anC plane \vaves in case 

(b). In case (c) n \ll!ill take only dj.screte · ,lues but in (a) and 

(b) it will take all positive values. 



where µ 0 is the undisturbed density • 

• • • 

f '..'3 1 cng as fA 0 '7 

For f'o >> 

' \Vill gr0v1. 

These perturbations grow for as long as light has not had time to 

travel a significant distance compared to the scale of the perturbation 

( Q:. ). Until that time pressure forces cannot act to even out 

perturbations. 

1.1/hen 

r ... 

' 
I/ B (11) + 

. ..,., 
e {_ .. 1:3" t 

I I B (t1J rf. 
0 

· !e obtain sound v-1aves whose amplitude decreases vii th time. T11ese 

results confirm those obtained by Lifsi1i tz and Khalatnikov(3). 

From the forgoing we see that galaxies cari.not form as the result; 

of the growth of small perturbations. ''Ve may x:pec t that other non-

gravitational force· will have an effect smaller than pressure equal 



to one third of the density and so will not cause relative perturbations 

to grow faster than l: . To account for galaxies in an evolutionary 

uni verse we must assume tli.ere 11ver·e finite, non-statistical, initial 

inhomogeneities. 

7. Tpe 

To obtain the st0ady- state universe \Ve must add extra terms to 

the energy-momentum tensor . Hoyle and Narlikar(1 0) use, 

where, 

-r ·b Sin.ce 1 c..b' =- o 

c 'CA 
J 

c 0.. .c. -
J 

) 

• 
lJ- Cl.+ 

' 

' 

,/,, \ - b h c c ;d.. I '-) b n CL - Q. b cl = o . 

There is a difficulty here, if we require that the 11 Ci? field 

( 21 ) 

(22) 



should not produce acceleration or , in other words, that the matter 

created should have the same velocity as t11e matter already in 

existence.We must·tJ;'=tr.> l1ave 
.. '.I 

(23) 

However since C is a scalar, this implies that the rotation of the 

medium is zero. On the other hand if (23) does not hold , the equations 

are indeterminate (c.r. Raychaudhuri and Bannerjee(11 )) . In order to 

have a deterrninate set of equations we will adopt ( 23) but drop the 

requirement that Ca is the gradient of a scalar. The condition (23) 

is not very satisfactory but it is difficult to think of one more 

satisfactory. Hoyle and Narlikar(12) seek to avoid this 

by taking a particle ratl1er than a fluid picture. Hovvever this has a 

serious drawback since it leado to infinite fields (Hawking(13 )) . 

From ( 17), 

• • • c -= - c ; 4 - (.µ-1 1'l) e 

= - e f 1 -
• 

\. 

• 



For f' *ft 

Tht1.s, small perturbations of density die avvny. Moreover equation ( 1 8) 

still 11olds, anc1 therefore rotational perturbations also die away. 

:t;q,uation (19) now becomes 
• I 'Z. I ( ) e = - e - 2 f-+ 3 r. + l 

.-----· 
9 _,, 3 ( 1:- (1) 

These results c onf j_rm those obtained by Hoyle and l'iarlikar ( 1 4). Vie 

see therefore that galaxies cannot be formed in the steady-state 

uni verse by the gro,•rth of small perturb at ions. However• this does not 

exclude the possibility tha·c there migl"rt by a self-perpetuating 

system of finite perturbations which could produce galaxies . 

(Sciama(1 5), Roxburgh and Saff'man(16 )). 

8 . Gravitational ·1raves ·-.. -----------... • 

no\1 consider perturba.tions of tl1e tensor that do not 

arise from rotatj.onal or densi·cy p8rturbations, that is, 

--
·b 

LI I 
f I 0. b 

Multiplying ( 1 5) by lA c V<:. 

=O 

and ( 16) by 



we obtain, after a lot of reduction, 

•• -r: 0 = 17 

In empty space with a non-expanding congruence Ua this reduces to 

the usual form of the l i nearised theory , 

The second term in (24) is the Laplacian in the hypersurface 

"'r = constant, acting on Eab • We will write Eab as a sum of 
eigensfunctions of this operator . 

where V
. (1-1) 

I = 0 

) 

Then 

• • 

·--

• 

} 

0 V 
Cl'- • 

_ yt 

Q '2. 

v (1"1) 
Q. b 



Similarly , 

Then by (19) 

Substituting in (24) 

Al"') [ n .... n'' 3 (2 t 

[ r2 (j-tt f'L) t i 0 2(f i fi-)] ::. 0 

We may differentiate again and substitute for D' , 

For \'l >>I 

and f2 >/ 
J 
t1 2. 

so the gravitational 

t(Eab Eab + Hab Hab) 

field Eab 
r.... - 6 as 1 t.. • 

decreases as Cl -1 and the "energy" 

We might expect this as the 

Bianchi identities may be written, to the linear approximation, 

Therefore if the interaction with the matter could be neglected 

cabcd would be proportional to n and Eab ' Hab to D -1 • 

In the steady-state universe when µ and e have reached their . 
equilibrium values, + fL 

• J o..b c R c La j b J - i S L °" 'R; b J • • 

:::: 0 



Thus the interaction of the 11c 11 field vii th gravitational radiation is 

equal and opposi"i e to that of the matter . Ther'e is then no net 

interaction, and decrease as n -1 • 

The "energy" 

Eab and 
.1. (E ,.,ab 
2 · ab-'-' depends on se• ond derivatives 

of the me·tr i Q. It is therefore proportional to the frequent.y squared 

times the energy as ineasured by the energy momentum pseudo- tensor, in 

a local co- moving Cartesian coordinate system .which depends only on 

first derivatives. Since the will qe inversely proportional 

to r2 , the energy measured by the pseudo- tensor will be proportional 
ll - 4 to as for other rest mass zero fields . 

9. of Gravitational 

As vre have seen , gravitational waves are not absorbed by a 

perfect fluid .. Suppose however tl1ere is a small a1nount o1' viscosity. 

We may represent this by the addition of a term ). CJ a..b to the 

energy-momentum tensor, where ·A is the coefficient of viscosity 

( El1le r s , ( 1 7) ) • 

Since 

we have 

(J ; b 
c.. b he. -:::: 0 

Ol. 

(25) 

(26) 



Equations (15) (16) become 

H = 

(28) 

The extra terms on the right of equations (27), (28) are similar to 

conduction terms in Maxwell's equations and will cause the wave to 
- "'t decrease by a factor e . Neglecting expansion for the moment, 

suppose we have a wave of the form , 

E E o.b ::::. -0 . 

This will be absorbed in a characte:r.iatic time "-/). independent of 

frequency. By (25) the rate of • gain of rest mass energy of the 

matter will be A () 2. which by ( 19) will be A- Ei. -2. ?. v . 
0 

Thus the 

available energy in the wave is 4- Fz .-2 .:>.:. )) • This confirms that the 

density of available energy of gravitational radiation will decrease 

as (l -4 in an expanding universe . From this we see that 

gravitational radiation behaves in much the same way as other 

radiation fields. In the early stages of an evolutionary universe 

vvhen the temperature was ver•y high we migl1t expect an equilibrium to 

bo sei up between black-body electromagnetic diation and black- body 

gravitational radition. Since they both have ·ciivo polarisations their 

' 



energy densities should be equal. .As the uni verse expanded they wouJ. ':. 

both cool adiabatically at the same rate. As we know the 

of black-body extragalactic elec1 radiation is less than 

5°:< , the terrperc.:.ture of the blac1c-body gravitational radiation n1us'..; 

be also less ·than this which l be absolutely undetectable. Now 

the energy c ·f gravitational does not contribute to the 

ordinary e11ergy momentum tensor TI ... ab • I'reverthele ss it will have an 
e.ctive gravi tatio11al ef'fect . By the expansion equation, 

• 

For incoherent gravitational radiation at frequency v , 

2. E'l. -i 
::. 0 ')) 

But the energy density of the radiation is 

f •• e• I 2 I 

-:; - 5 8 - Z }J-G - { (f t- 3 }1.) 

4 
2. -2. E v 0 

\vhe1'3 µG is the gravitational 1tenergyn density. Thus gravitational 

radiation has an active attractive gravitational effect. It is 

interesting t11at tl1is seems to be just half that of electromagnetic 

radiat ior1. 

It 11as been suggested by I-Iogarth ( 1 8 ) and Hoyle and Na'Y'likar ( 1 O), 

that there may be a connection between the absorption of radiation 

and the Arrow of Time. Thus in universes like the steady-state, in 

which all electromagnetic radiation emitted is :ventually absorbed by 

other matter, the Absorber theory would predic retarded solutions of 



the Maxwell equations while in evolutionary universes in which 

electroinagnetic radiation is not completely absorbed it would predict 

advanced solutions. Similarly, if one accepted this theory, one would 

expect retarded solutions of the Einstein equations if and only if all 

gravitational r·adiation emitted is eventually absorbed by other ma.t ter. 

Clearly this is so for the steady- state universe since /\ will be 

constant. In evolutionary universes 

V1e ',ii/ill obtain complete absorption if 
1 

oc. T2 \'\There T is the temperature. 

will be a function 

r >t o1 .r 
" 

diverges. Now 

For a monatomic gas , 

of time. 

f (" '.' a ga:-;, 

T d:. fl - 2 , 

therefore the integral will diverge (just). However the expression 

used for viscosity assumed that the mean free path of the atoms was 

small compared to the scale of the disturbance. Since the mean free 

path oc µ-1oe n -3 and the wavelength 0::. (2 - 1 ' the me 8.n free path will 

eventually be greater than the wavelength and so the effective viscosity 
() -1 • will decrease more rapidly than 1 L Thus there will not be conwlcto 

absorption and the theory would not predict retarded solutions. 

However this is slightly academic since gravitational radiation has no·::; 

yet been let alone invest.igated to see vvhether it corresponds 

to a retarded or solution. 
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CHl\.Pl'En 3 

Gravitational .Liadi&tion In An 

Expanding Unive1·se 

Gru.vi tational radiation in e:npty asymptotically flat 

space has been examined by means of aoymptotic exoansions 

by a nL.mber of &uthors . ( 1 - 4 ) ·'.Chey find that the different 

components of "che out,soing radiation field "peel of'f 11 , that 

is , they so vS different powers of the affine raJial distance . 

If one v1ishes to inves·tigc:.:.te hoi'l this beha•riour is :nodi .i:-iPd 

by the of matter , one is faced with a 

that doAs not arise in the case o.r, say , 

radiation in matter . For this one can consid.er the radiation 

trc.Lvellint; thro11gh a11 infinite t1nii'orm medium that is static 

apart :from "t;he disturbance cr,3ated by the ra\.i.iat;ion. In the 
case oi' cro.vi tcttional t;hi:J ir;; no·t pos,_;ible . ' .!!Or, 

if che were initially static, its own self 

1r1ouia. (;ause it to contr act in on itself and it v1ould cease to 

be static . Hence one is forced to investigate 

in matter that is either contracting or expandin;. 

in 1Jhapter 2 , we identify the Weyl or conformal 
·tensor with the freA gravitational field and the 

Rctb with the contribution of thA matter to the 

curvature. Instead of considerin; gravitational radiation in 

' 



acymptotically flat space , tna.t is, space that 

flat sc; . ..t.ce at large radial distances , \ve consider it in 

rts,11n:pt o tica.lly conformally flat space . .1\.s it i.;.; only 

conformally flat , the and the density of 

need not be zero . 

:'o avoid essentiall;yy non- gravitational phenon1ena. sue h 

as sound wavgs , we will conbiner 

travellin6 through dust . It was shown in Chapter 2 that a 

conformally flat universe filled v1ith dust must have one of 

the metrics: 

(a) 

(b) 

(c) 

i I 4 i 2 ( L f4 l . :t /l l ri 1 )) \ L s- i .: S-2. ( cl {; - cl.f - s· ,,\ f c D 't' s 'r. CJ c 7' . 

; A ( i ·- c as: c) (;. 1. ) 

. ·1 :i l. ). 
I '2. J2 'l. cl t: . 

C( ;.. 

LS' 'l c 
_ _J<j_ 

_\)_ ;. A t 2. (I, 2 ) 

--
--

fype(a) represents a universe in which the mutter 

expands from ·the initial sinJularity with insufficient ener3y 

to reach infinity and so falls back to another 

si11gularity. It i s therefore unsuitable for a dj.scussion of 

• 



0 ravi·tationril radiation b;y- a method of .::..sympto·tic expansions 
si11ce one cu.11no·t <_;et an inf ini ve from source. 

Type (b) is the Sitter universs in ::he 

mat·ter has just sufficient energy to reach infinity . It is 

thus a S 1)ec i o.l case. D. Norman ( 5) has investit;<J..ted the 

"peeling off" behaviour in this case usi11c; Penrose ' s co11f ormal 

technique (6 ). He was however forced to make certain assumpt -

ior1s about the movement of the matter 1.·1hich vrill be to 

be false . ;:oreover , he \vas misled by the soec i al nc.ture o""' 

the Sitter universe in which affine ard lumir:osi .. y 

d is·tance:_, differ . Another reason for not considerin;:; ra.::li<:...tion 

in the t•:instein-De Sitter uni verse is that it is unstable. 

fhe passage of a gravitational wave will cause it to contract 

eventually and develop a s in.;ularity . 

de will therefore consider radiation in a universe o! 

t,1pe ( c) corresponds to the general case vJhere tn.e 

rna·tteI' i.3 expanding \·Ji th more th.: n enough ener6y to avoid 

contructin;; again . 

2. fhe Newman-Penrose Formalism 

employ the notation of l{ewman and Penrose. (3) A 

l r-- nf-) rn f-/. ('(} f'-. tetrad of null vectors , / t'I 1· L is introduced 

, 



v1nere : lf' L,,., nf' (/,r\ M 1iil1v.: 
p 

lf- -- (lt' /l?rl; 

f- . lf (L = l) 
·- f.J. Mr M ;; 

vve label 
p.-

2 = 
()._ 

vectors with a tetrad 
('L: M ru) 

-} 

tetrad irdices are raised \lith vhe notric 

--uq ? - 0 l 0 0 ---
( ?__:__!) ( 0 0 0 

0 0 • 
0 -1 

l o 0 -I 0 

L 
pv O.b 2p. 2v vie have 7 . -) - ().- h 

l IA f'L11 + fl p- L II ·- rr1 m v __ ·- fA v 
.. fV1 fYl -

Ricci rotation coefficients are defined by : 

[ , 

(2 -

( 2 3) 

-

j_) 



In f'ac·t it is more convenient to ':.:01:l{ in of 1J-;.,'el11e 

complex combinations of coefficients defined as 

f ollO\'/S : 

/\ 

l 

I 

--

--

·--
• -

--

• -

·-.... 

·-·-

·--

·--

. -

( 
I I 

-y 
. L n /Al. 1Yl 1iVif l v)\ 

{v<.; v I L //.__,.;..; 

2. lt I 
• 'I 'I I 

I ( - -- 1 - -.'.:l )'l I 
fA - v 

0 Lr: v 1'l!J fl1 --



3 . Coordi.:1atcs ---
.Li lee i:·l e \fJrnan and Penrose , \J e introduce a null coo1:-dir1ate 

u..( = xj) 
lL ·v 

I 
i) 

vte take L • Thus L r ':Till be 

3eodesi c and irrotati onal . This implies 
v -- 0 (l 

-
( f -

cc- ::: - £ 
vie take :L + 

be parallelly 

along • IJ.'b.is gives - s) 
• a seconcl c oordina·te \':e talce an affine parameter 

long the t:;eodesics l f" 1_ 

r:· f L f" I (-:? Lt ) 
X 1 and X arc t\·10 coordinates that label the geo6.e...:.ic 

i n the surf v.ce 

1i1hu s 

In these 

L.l = cons t . 
l f.i. X : l). L = 

·u. 
Y't ,, L': 0 
I\ ,' ,v-

(1. b) 

( 

l = { f) 



The lield 

1,1Je 1nay calculate the Ricci and ;1Je.1l tensor com1ion8n't;s f r om 

the rela·tions 
a.._b c..-.:.L o-. b c: (L {.-{ 't ·-

• -- ,-

Using thA combinations of rotation coefficients 

defined <ind with /"C -= TT = £ = 0 

p () 
j) G' 

]) 'f 

/)d. 

Pr y ,,\ 
Pr vv 

v1e have 

") 

.._L b 

( J. 10) 

I!) - ···-
( ·s.. i2) 

(1.1.3) ..,_ -
( 1 -
( :s . 
-- --

(s. I b) 

tJ) 
{l . IY) 

"") c, ' J 



--f c;- -- ( {? r ;_ ) l -t ( . - J C\) b' ·- f, r po ' ('5 . 'l c' /) 

-
j_ - -' f" f ->. G ·- J<X 7 ,- - y; ·t- /\ r 6 '2::_ 1) 

-
- r;/t,' , ( oi. .,. fe ) f- ..,. (;} - ). - f 3 T f 1 J 

fv -4r- ?J.2 

- . ( f I - 1J b J l. (S -r (? T fA - J f ) " °I" ). f .,- 0 i (I, !.. ") 
• -

11 r - s l. = c r ;- i ·-f ) f - 2""' "'L - ,\,,-. - --r; - ). )\ ,_ t). 
il °' - J' '( = r v - - ). ft _ (J __ L f) 

J 
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the rotation coefficients in terms of th8 metric, 

we huve : 
I 

• • 
l L -;t. 

·- . . 
"L g £., ,. 

]Ju = &W ... 'iw- (o+f) (1.y6) 
\ - -

§" (s.1ir) 
, - I 5-$ & S L ( - $ '- "' ( ; - '- ( 1 V 0) 

S i:; - w = - at) w ·+ (; - ) w ·t <t- -/;:,.) 3 0 



in Chauter 2 we use the Bianchi identities as -" 

fiel<.1. equations for the te11sor. In the t,ewman- Penrose 

formalism they may be written : 

(I am indebted to R. G. for these) 

g lf'o -Y f, .,_]) cj; c:rl - $' foo"' <r "'- 'fo - f 'f, -( ')_:; 
i· '2f cf 0 1 .,.- 16' 1,o . (3. S 1) 

6 'fa - <t - - - 2 {2-r_ -t- lf7 
-t- S6f;. - °Jo/00 - 2P101 .,_ ?oJ. 

·-3(5115; - oy,),. 2(J>1 .. -s ·t $' <P", - Li 1> t -9r t 
-t {, ol. 1f, -I <t - '1 ,v- - J r - 2 i ) cp 00 't (J<l-t- Q "£) I 

'f J ( T - I{ ) · rh .:J.. 1.1 rA -r rb - if rh ( s 5 .3) l t 0 1- 'f II I :2 0 I 0 1.. 

(t)f, - ); - d -t (f o/ o.: 11 f o,) , 3r 'f;;r 
_-t _b ( o- f'-) f, - q '1 tl. °I b€f1 - 7 foo 

r 

- { f 11'3 - j Y' 0" <>;- :L ,,\ v ( ..,. 2 ( f f'- - j i ) 1- c 

-t- (, "Z 1,, T ( .,_ ). 'c·- 9,J_ ) t ;_() 6- f, :( { j SS) 



. = {, v -if, - 1 /A 'f 2 .., b ( - (:,) lf 3 .. ] b t '{ 
- 7 2(2F-r)1.,r2)102 . 
- Jcji,_o + 1(75- <f 2(ft'r -c.Jf-;_,-f (f)-6 

·- ,_ f ,,_, - A1,,_o ::: ]:A-lf'; -- :)a., Y's - f 
- 2 v 1,,.., 'I 2 f ,, ,. ( 2 r - 2 f 'T ;:;.. ) <f2u 
-t 2 ( t-E - o<.) 7 - G <"J_ c· J. 5"-t) 

LJ f 3 -- -t f </>.,_ ?_ - ll <f ,_, " 3v t'l.· - 2 ( y t 21'-)</5 
"/- ( 4 R - -r;) 0 /r - 2 ·v · - v t Q >- t,'l t-> 1. "-/ 11 10 . 

· 1 < r +- p) '97,_, ., (-t - - 1 v(.) cf :;.2 
·- . . ( 3. <j 8-) ]) f,'.<- r p,, - S' <f>oa "1- 3 = < 0- f - 2;;.,) o, • v tf 0

0 

- ).1,o - 2 C -r { 2.;. ·- l) </;0 "i-Jf ?,,,_ <>t 6' </12-i )7) 
JJ"' f; ,i, - r1, ..,. 6 rJi + .1 ])Ii = t 2. r-t- -t-.2 i - rA - i) rh 
'" '+'10 lo I I 00 r OD Toi 

- )_ (.;: <>r --c.) + ctp <P .. '!- ( -S- 6 ri) 

D f L). - r t <f,,,_-t 11 cp,, -t 3L) /] = v 0/ r ;; - 2 rp.,-?- )et,, 

'i- 2 p 1 'J. ;i. ( (,, !) 



4 . The Undisturbed Metric 

The undisturbed metric be written 

rLs '2 = SL 'l l Cl, I=- 2 - ci., f 1. - S ; f\. ),,, 
2 p ( c(, & 2 

r S i "- :L c.{ 2
) 

.5L ·=- (.} (_ h. t - J ) 
put tL '"7. b ·-p 

""Ghen cl 5L l. -cLtA?.. 't" 2 cLv--cl t - S 1 /t; L.. C "t·- v.. 
2Gclf ri.) 

is a null coordinate 
1ro co.lculate t', the affine parameter , \•re note th,_t C 

is an affine parameter for t he metric within the square 

( 4 1) 

Therefore t :: S 5L 'l ci L- T "f5 ( u., g.., cp) (it· 2 ) 
\vill be an e:.:..f fine parameter for ( "'- ·· /) 

ls is constant along the null geodesic . it 
would be taken so that r ·.::; 0 when t -::;. u._ • Hov.rever , 

i11 our case i ·t will be more convenient to raake it zero and 

define as ,, 
l:- .Jl 2 cJ_ (;- I r - ( 4. 3) -

0 ----
1i'his means that surf aces of constant r are surf aces of 

constc.nt t • This may seem odd, but i t should 

be pointed out that the choice of 1$ will not affect the 

asymptotic dependence of quantities . That i s, if 

0 ( t' ·-ft,) 
Then 



It proVeb to perform t.•e calculations with this 

choice of but all results could be transformed back 

to a more normal coordinat8 system . 

J.!'rom r --
The mat ·ter in the universe is assumed to be dust so its 

ener gy tenbor may be 
' 

7 = f I/ Gv v b 
For the undisturbed ca se, from Chapt er 2 

N O\r.f 

v1here 

bR 
Sl j 

V ::. 5LcJo. 
0-

5)_ /3 s "'t A - i/J'lfJ 

S' 1. .:. t 

fE.S-s 
s 

V V0- == I 
°'-
0 (s ·- •) 

'l'he1·efore if v-1e try to expand /J'" as a series ·in po\v:r of S"' 

t, l1e r esult v1ill b e very messy and will involve terms of 

the form L If\ S .05 s n. 
* 

"'It should be pointed out that the expansions used \vill 

only be assumed to be valid asymptotically. They will not 

be assumed to converge at finite distances nor will the 

' quantities concerned be assumed analytic. (see A. Erdelyi: 

Asymptotic Expansions - Dover 



Tnis t• oes not invali date it as an asymptotic expansion but 

i t makes tedious to handle. For convenience therefore , 

\-.re \\'ill perform the expansions in terms of .J2 ( r) which 

will be defined in general as the same function of r as 

i ·t is in tt1e undisturbed c a.se. 1rhat i s 

1,vaere 

then 

• 

I AJ. [ i - t 1" % t-_ 

cl5l 
cl r 

·-- Jt-r 'lf} 
JL 

-- I A 5_ s !J4r 
_f2_ - 252 <B:.15l -

For the third and fourth coordinates it is more convenient to 

use stAreographic coordinates than spheric o.l polars . 

Since ·b he matter is dust its energy- momentum te nsor 

and hence the Ricci-tensor have only four independent 

componenL.s . \·J e \vill take these as I\ ,-\) rti 1'foo 1 lO( • 

(;:,ince q> 
01 

is complex it represents t\vO components) 

In te.cms of these the other components of t he Ricci-tensor 

may be expressed as: -
c/Jo1 cP01 /\ • 7,, --

.3 full l • - "l 
I ·r - • ...... 

ci> 0 0 t 11 



·-• 
b /\ t 2 I 

- Q. cp, -
-</J.o - - l + -
b (\ -.rp0 0 

·-
. cf io o/01 -· ·-- - (er. 10) • 

cp (.:> 0 

For the undisturbed universe with the coordinate system 
. /\ -#=- A given : -- ·-- 4..)'1 ·3 

, 

- 'S R -

4 t1 
- 1fl_ - 452. 3 

cp - lE - 452 

cf Q I 
- =: 0 ,, 

( . 11) 

Using these values and the fact that in the undisturbed 

universe all the y "s are zero, we may integrate equations . 

(j. 10- 50) to find the values of the spin coefficients for the 

' . . 

. . -



- • -
G ' '\Z s· i,,. -

I -- ·-- - 2 -- • T . • . 5L 2. Jl' 
- (-t Jq 'l.( { ..- e. Q..v.)SL- 2t (]_3(1 t- 2. e 1. )--Jt -s+- . -- -

25l 
-• -

' -

-
4-

I - (-) + -1 -:2 52. 

J J} 2 
J 

5. Boundary Conditions 

• 

A'- - ..,.. 
• . • 

L Jl --i- 4Jl.3 

wish to consider radiation in a universe that 

asymptotically approaches the un i isturbed universe • :;iven 

above . et> Or> and /\ will then h&ve the values 
• o.bove plus term3 of' smaller order. To de·termine this 61.Ven 

order o.11d the order of 4:>01 and % ' t l1ere ·are tv.10 

• v1hich ways 1.Il \'le may proceed. "e •• may talce the smallest oraers 

\<Jill perini t radiation, ths.t is • 

order t erms than these in an C.. 

turn out to have their cP01 
dependent 

derivative s 

only on themselves and not on the r -J coefficient 

of , the radiation field . They are thus 

not produced by tl1e radiation field and will not be 

Alternatively we may proceed by a methoa of successive 

• • .... 



approximations . We take the undisturbed values of the 

cosfficients and use them to solve the Bianchi Identities as 

field equations for the conf ormnl tensor using the flat soacP, 

boundary cor1di tion that 1-;;- : 0 ( • Then substituting 
llJ'l S" these r in equations ( 3. iO - (- ) calculate tl'1e dist1)rb-

ance3 inctuced in the spin coeffisients and substituting -che..3e 

back in tne Bianchi Identitie5, calculate the disturbances in 
'l)l''S the I • l!'urther iteration does not uff ec·t the orders 

of the d isturbances . 

Both these methods indicate that the boundary conditions 
should be: 

\•/ e 

/l .. ... 

--

--
--

+ () (JJ_ -<i) 
01-52-=t) 

(see next section) 

0(51-=t) 

( ')_ 2) 

3) 

also assume 11 unif orm s inoothness" , thic,t • J.S: 

d d d - 0(-51-r) -. .. .. ' • 
(.... • d x (., 

--

etc ••• I 



' 

..L "' vi..1...L..L. be shown that if these boundary conditions 

hold on one hypersurface const . ) they will hold on 

succeeding hypersurfaces and that these conditions are the 

most severe to permi t radiation . 

6 
As Newman and Penrose , we begin by integrating the 

equations (3 . 

:Vp 
j) er 

where 

Let 

• -

10 &11) 

= f -f- 06 -t" 

:: ?re- f() 

-• 

-... 3 fl 
411 r ·t 

-
(' 

-- <.) 0 

-
Oo 



then ·op ? ··2 ., 0·. I) 
let ·p - -(» 'I ) '-/ ·-1 (6.2J -
then D 1. y -CR! (LJJ 

• S ,,. Cf clr ..t{. cD s ince 

V L( ;;.. f- T O{t) where F i s (6 · '+) 
"'-/ .: r F r 0 (r ) 

}Io111ever ce ::. o(r -1) 
therefore l)l. 'f " -r<.j>F .,. 0 (-r C (r -;r ) (6 
i;herefore ]) Y :: f-rO (r -

Let 

Then using: 

y 
p 

--

'l) : J 
Jt 

c onstant 

(\ -; ( n A - .) ,_ I t A.) J_ - - et - A ?.f)_ 1 .. .. ) ) 

J. JJl 



Integrating , 

3 Jl-;
1 
0(1) a...,. 

.lfJ- -r O(i)_)dJ;_ 
Jl,.- 0(1) 

-

the ref ore :;. - A "t- o ( lo .n_ 

.i!'Or 1-L / 

d J1 -i- 0 (,) -= - Iv T 0 (SL -I) 
dfl 

the r ef ore 

6, IC 



l'tepoo:t 

\vhere 

then 

the process vii th 
-2 /\ \l-3 - - 2 52. - 1-t _; L I - • 

::. l .52-

--
h, :;.. 

d k ( J) _ _,. 6 (1) o (SL - ') 
J.Sl /t_ :; 6 o( {fa I '- ) . -r 0 ( J1 - I) 

(-51-r 6 (t)) .:; 0 ( lD552.) 

(6.12) 

(.J 0 Unl ike tf e111man and Unti, we cannot m:· .ke \. zero by 

the transf or.:natio11 'r 1 
:::. 't" - P 0 

, since this would 
I - A i' K alter the boundary co11di tion .I\ - 52 :! <\ -=r 

(; .) J_ 
Cont i nuing the above process \ve de .:· ive: 

f - 2Si-2_ A 51 -;_ j 0 .SY'(.,. (iA -z._ J .4 f 0

) 5l -> 

<; Ll 4 I. n <J.. o o 'J. 6. o 6 o \)- - Q ( .. n - 7) c--' .,_. -li ' ' 'l" n ( .- I ;i.. - . J ;. , J '- J & . ' ·:J 

(t.1l) 



• 

To determine the asJyrnptotic behavio11r of' "\lr ol.. ,8 t ... l '.> II 

and u.:> \'Je use the lemma "Oroved. by Newman L:nd Penrose : 

':I1he (\ x I) matrixBand the column v ector b are 
• funct ions given of x such that: 

B -= o(x-'l) 6 ... o{ x -2 ) (6. , .. i) -I 

The x ft.. matrix .4 • () J.S i ndependent of x and has no 

ei.:;env;;.:.lue i-1 i th positive rea l part. Any eigenvalue v1ith 

real part is r egul a r. Then all solutions of: 

•• - (A )( _, 7 R ) J T b 

are boundei:i us }( -) cl) •j is a c olumn 

vector . 

J.!'O r reaso, s to be explained below, v1e will assume for 

the u1oment that 

101 ()L-S) ·--
o (SL-b) d 4 (? i 

f1 c) - \ . I J -
)5l 

J __a_ 
I 

--... ' ' 
) )( v d xj 

We take as j the column vector 

r n ') lr JL J. A 51 Sl. i(\ 52. e3 52.").. :e 3 nic l-.J2 c )_ 'j 1 ) I ) ) _, ) .:.) ) ) .) ) JI I 

(6'. }_O) 



\ 

By equat ions 3 s J) S, 13) "l. r4 I 3. s I 3. l.f y 

• 

A- ') 
·- .J 0 fo A f:, A- o o o o G 
00 0 000000 

0 
0 

0 
0 

0 

0 
• 

CJ 0 0 

0 C) .._, 

CJ 0 

f) 0Qe) 0 0 

-I o o 0 0 0 

0 -I o 0 0 0 

B and b are o(Sl-1) 

,:hus t: .:: 0( SL->) 
</.., S" '° o (5L-2.) 

{;.) :: 0(1) 

• >.Jlnce 
-'-[ ;; oL t- fS 

CJ (51..- <)_) --

i 5.ft 0 

0 0 
0 

0 
0 £·. ] 0 
0 

0 
0 a 
-2 0 • 

a -2 

expressions involving 

and J r'h • Tot 
)Sl 



' 

Usin0 this vie i11tegrate eouatior1 ('3 . / ·i) by the same 

method as above . obtain 3. 
't 0 ( i.A. }<' l) 51- 1 (j ( .5l . ) 

J 

v:e rr1C1.y ma.ke a null rotation of the tetrad on each null 

geoa.esic -- -
--

--

is constant alone the geodesic since the tetrad is 

parallelly 

By taking we may make 

Jnder a null rotation 

9'o, = fo1 "t o. <foo 
'l1hus until \·1e have s-pecified -che null rotation we cru1:not 

im] ose a boundary condition on A /01 
more severe than 

• We v1ill specify the null rotc-;.tion by 
i = <in-·- s) 

u 0 and in that tetrad system will impos n the vc :;. 
boundary condition that eh 0(51--:t) and is 'ro, 

Then by using this condition on 

by equation 
w ·;: 

I 

• 

uniformly smooth. 

and o( .. Jl ·1 



using this in eq_uation 5 i) 
Yi= 0 0--6) 

then by A. 1·1) ( \"' 'f ; 0 _;'l_ 

putting this back in equation (? · C.f 

w :::. 0 ( 5)_ -1. lo5 52-) 
b;y equation ('5 .St) 

1 
= 0 ( S2. - 1- lo 5 .SL) 

by eauation (1. 11) 
o(SL JL) 

by equation 

by equation 
·:;. 0 ( _))_ -1-) 

by equation 

by equation (g l( "-1) 

By differentiating the equations used \Jith resuect to X 

one r .. a ,i sho1:1 thc:..t ."'J•" ol R T1 ' / /-'/ <-t I 

uniformly smooth. 

Ad,lin, _; equations and: b O : -

• .. 
' 

ere 

- '1- J>f .. DA ).. to -3f' t ')d. t- t foo - '2J1.o 

--;- jf cp,, "'t 6' 'l,0 (l2i) 



may use the lemma with 

--

By equ t..t i ons 3. /G. 3. 11-,. G. 2.8'. 
I r 

and 

'.i'heref ore 

- )_ 

0 0 0 

0 0 -I 
are o(s'L-2) 

·v.1- :: o ( n·-
·:: . 0 ( 52 -

CJCJl. -1) --
and are uniformly smoctb 

From (t, 2 q) and (·1 _It) \-le may shov1 

f-' # 5)_ - I 'r- 0(.51. - 2 {oJj(__) 

using this in (0. 2.. 
Lf .,_ "' 0 (Sl. ·-5 Co5 JL) 

then by (1. 11-) 

and y"l- ::. 0 ( J2. - S-) 



Integrating the radial equations ?. i 3
1 

1 (V) 1. I 5. <t 's. S" 

3. 
o ·- 1 I · . 

0( :: o< Jl - fl °Sl- s.,. ( S A1ci '?._ f 0ol 0 7 ci °b- (>)_)'L- o {J2 -5)@.sl 
•:- -2-{-f()0J2- ST (3 !9(-? o_ f 0 )n-<tcy 0 

r 0 ·- /1 J2. - I -f- j)_ 1_n - 2.1 0 ( 52. - S ) '$]) 
Y. 4 

/\ .,, _A o52_ - '2._ ft ( ,\ o "!- 6' "') __,'l,. - ST Q (.JL - 't) (6 . 5 V) 
2 

• ·o= f lJL- ':-ASl3f "°-.- (3fj""'S""-10 SL'.:_ g '-6 0) 52- <r., ':.-

x ::: X 1-0 + o (.52. -5) 0 s&) 

·--
31-) 

Adding equation (3 SS) t . 2 X ( J.:. <; 9 ) 
11r _ v 111' D rfi - ri et- s n =- ('(\ - J p 

TLo T 1 I 

' 

• 



I 

·rherefore &(59) -
By equation · Jo) 

0 v ·=v -- ± y ; Jl -!( 1' 0 ( J2 - 5) 
orthor:ormali ty relc:tions { 2 .1) . 

J iJ.4 ; x L -(5 ic:J ;- LW) .:: x (, 0 i- 0 ( ..)'l - 4 J 
-

By the 

- (S .. S 1 g· _sJ) 

--
. 

By making the coordinate transformation 

Ll ( --
II -- I 

I ' ' ( u, XL) ( (; {, 
x ·- x T -

' waere c3 
..J I 

-- _ x· 30( I 3 ) _ x ( 3 
-r c_;3 ) y-

/ 

X l,.o 
:. 0 

·:le still have the coordinate freedom 

Xi..::. j)L(xj) 

1.ve may use this to reduce the leading term of 3 ( 3.; <-) to 

a conformally flat metric (c.f. rTewman and Unti), that is: J 
- r1 2 Rn-<;),, d.51 -(,) (t lt J 9 



• 

v1here JO 
..._ -

7. Ecuat ions -

• 

By comparing coefficients of the various uo1:Jer.s o.f JL • 

in the non-radi a l equations of ·{ 3 , relations between 

the integr ation constants of the radial equations may be 

obtained: 

In equat ion 3 . 2 3 the term in Jl-' is 

- l A ( 0 
• -

0
) - J_ A 

4 0 0 4 

the ref ore Q 0 .,. ( 
6 - J ( f-· I) 

u ·-:. 0 (5J.-I) therefore by 

In equation (3 , Su) , the constant term is 

\/o 
therefore 

p - p . ( ( 0 ·- 0 ) 
) I 

By the t er:m 

p - 0 - ..... 

ther.'efore -0 I - -0 -
0 - l. -



if 

By makins a spatial rotation of the tetrad 

(\/\ I {J-- - L cp f'-
1 ' I '::: e. fVl { { f z.) 

\4/e make S real. take 5:: i l I --rt )( -t ;(' j, , the 

stereo-.:;ru.,nic project factor for a 2- sphere . 

B;/ the Jri_- lt- term in equation ( 1. 8') 
r}. 0 ·::. \I e. u. 

"-i VSev. 
-.J- (., _cl_ 

') I '\ l( 
X;) cJX 

· where \] : 

By the ·iJ er·m in (5. r2-. I) 
1 e ( S V \! S r S V 'i):7S') " - 'J. ;v--

0 

-

/vl 0 
·:;. - fl - c:; 1.. v v lo s e, Q,U. 

I l/ 2 J 
·:: - A <)_ [. i + e. Q J 

Lt - -
By · '5 f ) . 6 0) (s. G t) 

2 0 cn- 1 ) 
Oj 

f- . 5) 



00 

• i.-1nere 

t3y m<.-i.i:eing a coordinate transformation* 
i.J.. 1-1 cLv. I/ (1-. <t) cy ( -- 'r -

• 
• 

I t1 :: o 
I I 0 flL. A 2 '2.. c..... 0 ' v ::: - e - -f. 

0 lo 3 

therefore 

By tne 
- '-I ' Jl. term in (J . 2..b) 

2 ' C}.U.. 

f -
tnerefore 

o o 1- i l) 2 2u... p J ' - -s- f + b - lo :: 0 

7- ' . - Li.. e, 3 -t- (z.1o) -.,,, I 

transformat i on does not upset the boundary conditions 

on the hypersurface 



.JY tue Jl -Y term in (?. 2 5) 
A 0 = 3 ( (3· - 6' 0 ) (T- I I) 

By the S2_-<.f term in Q.22) 
-- ( 6 - cS 0

) e '-- V - e.'-'- S V ."' -6: "') (t-
By the JL-2 term in Q. S-o) 

0 o - Llf-c 
../. \.A.) . - (....J - ':2... 

,I I '3 

.. t-J" ; g,_ '-'-< s VG 0
- 2 6°fjS) T K (x. c) e, Q.t. 

t.,. 

By the term in (3.20) 

'-A S 17 o I o t.L SV- o J o r7 r ..... v r "T w ·- e :.:.. - CJ v ,) e 
the ref ore C :;. k -;. 0 
the r·ef ore 

Using 

Then by 

Using this in 

C+- I 5) 

CJ- IC/) 

(·::;- . IS) 

(t= .ff;_) 



(5 ' s / ) . 6. 1) f}.60) d-b t) v 

J 101 ·- () (.FL - :r) -. 
J L-._ 

d 1b0 - 0 (S2 -9) -

_J_ /\ o (SL -:r) _, 

c) v--

l .? . ( 5L -:;) d - 0 --

Thercf ore if the boundary conditions { S"". i- Y) hold on 

one null hypersur!ace , they will hold on succeedinG hypersur-
faces . 

By 
0 (JL-2_) 

off" beho..viour is therefore: 

- CJ ( t -1) -

lf 1 - (j ( i -1) -
0 (r -1 f -

f. 21) -
]_. 

• o(r - i) 'f L 
--

·2 . O {r - 2 ) 'f o 
--



As mentioned before , this asymptotic behaviour is 

of che zero of r and \·;ill hold for c..ny affine .)&rarneter r 
To perform the intesrations we will &ssume 

for definiteness : 

'l'hen : 

•• . <:> J1- 1- rfi i JL. -8 ·r 0( 5l - 9)· ... 9 01 ..,.. I o; _ ' y: 11··/- T f)_.1(.,. o(JL-'1) 
' fi52 ·3 T !\ fo-1- -r Q (Jl -j,') 

. -

• 

4-
J1 -5' S fJ. T 

.51-9 T o( _fL-10 
too 

- 1. 
.,.,._ [. fl v ( 5 - 1 Q;... J. <..l.i..) 5·0 n - b ' _ 1r --o e - I e - v J '-

• 0 <6' :2 .... 
+ . .L [ n 3 ·7- . o iu o (} \.( u.)· 0 

3 . 11 - '? er 0 e, -r 0 Q., r-t rl. e., - '-f 0 0 

• 

t 6 <> ( S Ro "'r f' i r 6' 0 (J A5°-r f )- J2. -:; -
0(52.-c;-) t-.2S) 
0 "Jl,-'f __ (2 fJ:S 0

..,. 1(:) JL -" 7 o (52-6' ( f-. l y) --

= -j ·f ," )51->., a( JL -",fps ])_) 

• 



• 

·-
r 1 ( ;, ., if/)· J2 -3 r o( 52 _,, u,5 52) (! 2 0) 

-

- :£ - (-} fl, - I f} '2, 52 - ':_ f-} 3 J)_ - 51 (f fJ "_ t' 7") 5l - if 
:2 lt u r ·-. -
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'i1hU3 t; 11G derivative Of r Ii ' :·epenQS 0l1ly On itself 

ar1d not on the radiation field . It therefore re 1Jresents a 

type of disturbance unconnected with radiation. If it i s 

zero on Ol1e hypersurf ace, it 1vill remain zero. In this case 

it is possible to conti!'l.ue the ex· )ansions of all q_uanti 

in neg; a ti ve po1,.1ers of J2 without any log terms 

·11he .... . mevric has the form: 
i$ i'f CJ 

I '2.. I 
li 3 --'J ... - ) ·- --

'2.4 J1?.. 0 (52 -<-) 
[ 

- r--
0 ( -y) 

CJ.' 
--

I / ( ; 3 G} - ·-2 f g t-J Jl - r 2 R ?'2. S - ·t-

The asym)totic group ts the of cooruLnate 

that leave the form of the metric and of the boundary conditions 

It can be derived most simply by consnering the 

infinitesimal transformations: 

(f, I) 
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To the asymptotic zroup we deuand 
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0(51_-<-) :s .:: 
..._ I 

(.. (j (52,-4) --
' ' S'3 - 0 (yt_,-b) - &' 

- 11 .... 0 (5L-7) ..... 
-
r - 0 {-5G-1) -
- o (SL-, 

01 
--

dy 

<6. t-) 11 ' --



k '""2.. :::. 

/( '2 
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·f- (( ( y q 
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• I< I:: 1\0/ (U) 
)J.. j J 

c\ I k "3 :::- f( OS (v.., 'X- l.) -

( ?. 11) 

\ 

l ' 

1. I 2) 
w 

0- '""->) 0 . I ) 

10) 
. I re. t.2) and&. 1"3) imply that K. 0

'- is an anal:-ftic fu11ction of 

)( '3 -t- t,_ 'X.1 . ·rhis is a consec;uence if t t1e f that 1t1e 



recluceu. the leadi11g term of 
. , 
v' 
'.J to a ., 

' 
form . the only allowed of /, 

)( ·'r"" e c;.. v utJ ... 

conformal transformat i ons of the form : 

--
c ( x3 + L xlf-)"I cl 

{).cl - be -- i 

':!hen lic"te six param8ters Q.., b c. cl , I 
• ure c;iver: 

c1.etermined. by (<if. I<+) ..{ 1 is also uniquely determined . 

the asymptotic ;roup is isomorohic to the conformal sroup in 

two uimensions . has shown that this is isomorphic 

to the Lorentz It is 11o;vevo r· iso1i1orpf1 ic 

to the group of motions of a 3- space of constant 

curvature which is the group of the unperturbed rtobertson-

.alker space . Thus the asymptotic is the san1e &s th·; 

sroup of the space . It is not by the 

presence of This is interesting becausA in ·i-. 
i:; '" ... c 

case of e;rc..--ri tational radiation in en1pty, asyr.:ptotically -·ic:.. t 

space, it turns out that tha group cortains net 

only the '1 O dimer1sional ir1homoge11eous Lorentz __;rol1p , the z:;roup 

of motions of flat space , but al8o infinite dimensional 
11 supertrar1slations 11 • It has been that 

might have some physical significance . 
in 

particle physics . The &bove result would seem 



to ·t;hat this is nrob<..,bl ·' not the cc..s e our . ... 

ur1 i ve:rse is ,:...ln1os t certai:·: ly not asyt'lptoticu.lly flat though 

it muy bG asymptotically 

9. v/hat an ob .. erver would 1neasure 

The velocity vector of an observer with 

du s -c 1:1ill be : 
.. -

v --
). 

v --

v --
4' 

, the projection of the ;,..:ave v 0ctor in t;he 

f\"'\ observer's rest - space ( the anparent direction of the wave · 

1:1ill be : 2 s - vv q, . - I 
M /l"'I 

M 
-2 

\ - J1. .,. -• ' 
I I -- T ).. --

t -
;2.. 



c: L -- 0 ( Sl. --

.3 
-(} 

l-
-

lf 

'l'he oboervcr' s tetrad may be b7 t\•IO 

space- like unit vectors 

o -4) <:; --. 
I 

O{ J2 -z) --
'.l 

{ 
5 • . , - J5. 'J 

I 
3 ·- --- .j 2 \./ 

""' :e v:ri te e. --
(J.. 

and C 
M 

c 
I 

t 
::i.. 

f; 
3 

t ·--
u 

- 0 ( ._,)<]_ ·--
0 { ___,'2_ - Q.) --
. I 

-l - . 
ff 

' L 
Ji _5) 

13-:r m9c:..surin._; tb.e o.ccelerc.tions of neirjhbouring dust 

p<...rticles , the observer ma.y determine the 'electric ' 

cou1ponent s of the gravitational v1ave 
p '1.. E. -c V v 

a..b °'-f bi 



In the observer's tetrad t!lis has corrt1)0nents 
,,,,,. -E - ,.,.... 0 0 0 ( J1_ -'r) -;- C> 0 0 o(-52-4) - a 0 r CJ 0 0 I 

0 
• -J I 0 - -

- -; 

0 (Jl-5) • ,.... 
l t -1 C) I 0 . . 

• 0 0 0 0 I I 

' 0 -( 0 0 .l -

- O{Jl-6) ·-r • 0 0 I 
• 

0 --.L 0 l.. I i;_ \ ,\ 
I ( _1. r J -0 0 - ). 

'"hi ' J. .;.; ...... 1ould be cor.ipared to the behaviour for asymptotically 

space for \vhich - o(r--') ,.... o(r-;) - 0 0 t - 0 0 0 -
0 l CJ 0 C) I 

0 0 - l 0 l 0 -
- eJ (r-2) o(r -1)_1- 1 

. 
"-t- CJ [ l 0 I -1 C> () v ?" . -r 

I 0 0 l 0 0 i 0 "' 0 
l 0 0 ·- l 0 0 o-i !q:;) - -

\ t l • 
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Sin,:;ulari ties 

If t;he Einstein equations ·1·Ii thout cosrnological constarJ.t 

are satisfied , a Robertson- VJalker :::nodel can ' bounce ' or avoid 

a singuli:i.ri ty only if the pressure is less than :::iinus one-

third tne density . This is clearly not a property 

by normal matter though it might be possessed by a field of 

ncGative energy density like the 'C ' field . nO\vever there . 
lS 

a 5rave qua11turn- mechanical d.ifficul ty associated \·Ji tn the 

existence of ener3y density, for there would be 

nothin0 to prevent the creation , in a given volume of space-

tin1e, of an infinite numb ex' of quanta of ·Lhe negative er1ersy 

fiGld a corresponding infinity of particles of 

enere;y . If \ve therefore exclu·de such fields , all Robertson-

\val \.er moC1el:.> rnus·t be of the 1 big- bang ' type, that is the·;,r 
. 11C1.ve a sin0uiurity in the past and 

as \·Tell . 
1 It has been 

one in the future 

that the occurrence o= 

these si11Gt1lari ties is a consequence of the high degree of 

symmetry of the Robertson- Walker models which restricts the 

expansion and contraction so that they are purely radial &nd 

t;hai; inore realist i c models \.,r i th fe111er or no exact sy1n1netries 

v1ould not have a singularity . 1rhis chapter \•Iill be devoted 



t 

to an exarnination of this question an:i it 1:1ill be sho\-1n tht.t 

provided certain physically reasonable conditions hold, 

model must 11ave a singt:lari ty, th;.- t is, it cannot be a 

5eodesically complete piecewise c2 manifold . 
' 

2. 'l'he Sou at ion 
D. 

'.rhe expansion 9 =- v . 6--
1 

vii th unit tangent vector 

of a time-like ;eodesic 

VQ.. obeys equation (7) 

of Jhapter 2 : 

e V°' = I°' I 

. v ct ·v b CAb {t ) 

A uoint; will be said to be a bingular point on a Geodesic 

(( of a time- like geodesic coni:;;ruence if Of or ·the congruence 

is infir1i te on y' at fr 
conjur;ate to a point f 

• A point \vill be said to be 

along a geodesic t if it is a 

singular point on ( of the con0ruence of all time- like 

p • A noint 
tf3 to a sp<.,ce - like hypersurfac&, 

i will be said to conju;&tc 

if it is a ·1oint 
w3 of conbruence of geodesic normals to 11 . .tin altern8.ti-:re 

a.escription of conjugat;e points may be 3iven as follo1:Js: 

let be a vector connec·bin3 points correspondins distances 

alone; t'v-:o neighbouring 3eodesics in a conGruence 1.-1ith u11.i-t; 



f 

tan...;ent vector V°: Then K°'- is ' drag,;ed ' along by the 

congruence, t.1at is 

J l\ <>.. - C) -
"- J) KC\. v ' kb {!1) -, ' - (/.I b 

JJs I 

\ J)2 K cz R°" . (s) -I - 'bccL I 

J) > 2. 

Introducing &n orthonorraal tetrad e parallelly transpo.rted 
Cl. 0.. vo. fl1 

'V v1itn e - have - vie u (J 

u 
oL 'l J\ t'v 

I\ (4) - Q_ M 
(If\ n.. 

ol. s CJ, 

I'\.. (\.. 0.... b R vc vd. 
0.. - e, e b cl ... C\., Q, M 
fVV 

-
1 .. solution of (!.t) i'Iill be called a Jacobi field . ·.rhere :ire 

clet...rly eight independent solutions. Since Va.. and l{:.,;o.. a::·e 

solutions, other six indeuena.ent solutions of (f/J m<--y ·oe 

to • 

a 3eodcsic 't if , and only 

1i1hen 'f... is conjugate to p 
if, there is a Jacooi fielQ alon§ 

1.-JJ..lich vanishes at p and . :.i1his UJ.ay be bho111n as f ollo'.lS: 

{ 

ti1e J·a.cobi fields which va11ish at f may be regarded. ss 

i1eighbourint; geodesics in the irrota·bional congrl1cnce 

of all ti1ne - lilce geodesics through f . Therefore they obey 

• 



·-- v 

mo.y be 'N'ritten 

--

.. nere cL A 
M I'\ 

cl g 

, A {s) 

-

I\. 

d f{ 
f 

y 

A 

will be oositive definite . .. ·Ihe:.:·e \:ill "'.:>e ., ear p 
lh ('\ 

a J acobi field 

A Cs) 
vanishing at, p and q, if, and only J); 0 

exp (sf :!{\ cLs I) J3ut 
m ¥\. 

'11heref ore 
.1 _d.. (dd(A>) (9 -- d<l,(A) cLs f\1 f\ 

/\\I'\ 
r 

and cL 'l (-) A -Q 
Ml\ Mr h. ol 'l. 

'.:'l1e.re fore ci • finite 1.S 
ols 

cld(!) ()_ ... 0 Hence . infinite \'I' here - only wl1ere -1.S anu • 

Thus the tv10 definitions of conju.:;ate points o.re equivale11-c . 

'.l'his also shov1s that singular j)Oints of con3ruences a:r:·e 

points \vhere neighbouring geodesics intersect. 



null geodesic congruences with ourallelly 

tangent vector l a._ 
vie may define the conver;ence f as 

in Chapter 

define a singular point of a null Geodesic congruence as 

one where e is infinite . 

'.L't1e condition tho.t the pressure • l. ::,) greater ·than 

one-t11ird t'!:L'a! density may be s·tated more c;e11ero.lly as 

co:1dition (a) . 
,... 0 

(a; t;" / ' f > j_ T :;. ) for a.ny 
• 

-G :::. J (,.,,) observer vii tl1 
I'\ C>.... 4- veloci ty i...J , v:l1ere 

is the enorcy d.ensity in the rest- frame of thA observer 

T ::: -A-
l is the rest - mass d.ensity . 

o and pressure 

perfect fluid with 
0 v c,vb 

implies 70 for It 

Condition (a) will be satisfied by a 

any time-lil<:e or null Therefore by equations 

(1) &nd (5) any time- like or null irrotational beodesic 

congruence must have a singular point on each ceodesic 

c. finite affine distance . Obviousl;y· if tl1e -10·.-!-lines f or;il 

irrotational geodesic con3ruence, there will be a ohysical 

I sinsularity at the singular points of the congruence 

the density and hence the curvature are infinite . will 

be the case if the universe is filled with non- rot&tin5 dust 
? 3 

llO'•Jever, if the flo\·1- lines are not seodesic (ie . 11on- vanisnins 

pressure or are rotating, equation (1) cannot be 
applied directly . 

• 
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I 

2, opu:tially :1omo;;eneous .... i.nisotro.)ic 0ni verses 

models are 

ar1J. isotropic, that is, ·they have a si): para:1:eter sroup of 

motions trunsitive on a surfac8 . If v!e redl1ce tl1e -
symmetry ib,y considering models tl1;;;t arc spati::.-lly eot1s 

but; anicotrouic (that '.is , t11ey hc....ve a ·thr·ee parameter grou_p 

of mol,ions transitive on a space-like tnen 

tne flow may have rotE1tion , acceleration 

there would seem to be the possibility of non- singul&r 

.L . Shepley 4 has in"'restit;atod. one particulo.r 

l1omoc;e:neous model containing dust and has shoi,1n thc.t 

there is alv1ays a singularity. Here a seneral result will be 

proved . 

·.J.'hei"e be a ::;ingulari ty in every model \·1l1ich satisfies 

condition (a) and , 

(b) there exists a q ..- of on the space or on 

universal Y;}3 v1hich is transitive on at; 

..:>ee section 5 

one space- like surface but space- time is not s·tationary, 

(c) the energy- momentum tensor is that of a perfect fluid, 

-- • 

flow- lines is uniquely defined as the time-like eigen-

vector of the kicci tensor. 

• 
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like 

R, tl1e curvature scalar 111ust be co11st<:l.nt 

sur i'ace of tra11si ti vi ty ff 3 of the s roup . 

On ,., ... o. bl_ c...tv . -

· .. ::here fore R·. 
/ 0... 

111ust be in the direc t i on of the unit time-like normal vc-.. 
to f/ 3 

• 

-

\-J 11ere 

CR jU-J . indicator +1 if (( I (".. 
• p:::.st directec. e lS an - lS - J 

- 1 if R . c.. • . C.irecteC: - lS 1u-cure - J 

'.L1hen ·\{a.: b] =0. 

Tl1us V:"" is a cone;ruence of geodesic irrotational 

vect; ors . .i3y condition ea) , R°"b va... v h > o 
timo-lilcr-; 

• 

the must have a point on e <::Lc'-" 

seodesic ( by equation 1) either in the future or in the 

£urther , by the homogeneity, the distance along euch 3eoiesic 
I J 1·ro1n l1 to the singular poi11t must be the same for each ,-;eo«ce::.:ic . 

if tne surfaces of r emain s·Jace- like, 

must degener E·t e into , at the most , a 2 - surfaco c2 111hich 

be uniquely ciefined • Let M be the 
c'2- . 

subset of the 

of the matter which 
3 

empty subset of H 
group transitive on 

intersect Let L be 1..11e 21on-

intersected by fY . Since there is a 

1f , /... must be [--/ 3 itself . Thus all t L .• e 



flow-lines t trough H3 must intersect the 2 - surfuce c2 . Thus 

·bhe denoity •::ill be infini"'ce tl1ere CL"1..:. -C;h0re i::ill be a 

r>hJJical sinGularity . Alternatively if surfaces of 

transi ti vi ty do not remain space-like, there must be <::.t 

least one .::>urface \vhich is null - call this s3 . s3, F - O, 

1 0 
J 

( 
,0.. 

• is zero, vte can talce any other sca.J....:..r 

in the curvature tensor and its covari.::nt d.e1·ivatives . 

·.!. hey cunnot all be zero if s9ace- time is not station:.:::-y) . ..e 
..,. 

introduce a geodesic irrotational null coigruence ons? t:ith 

Le-. 111here [' t · 1"hen by e ci ua+i·on an00nG . v , " : ()... -· . . ? ti1e.L·e will be a singular of each nul L geodesic in ;:_;. 

vii thi11 i'i11i tG t..ffine distance si ther in ille future or in 

past . 2- surface of these sincular points will be 

defined . ·The sa1ne arr;umen·c used before cho;...,rs tha·t tl1e dc:r1si ty 

becomes ini'ini te and there is a physical singulaI·i ty . In fact 

US 83 is a surface of the whole of s3 will bE 

and it is not 1neaningfu1.· cal.!. it null or to 

ccse f r om the case the surfaces of 

remain space-like. 

:J;he conditinns (a), (b) , (c) may be v1eakened in ti·.Jo ·,·1a:.rs . 

Condition (b) tnat there is a group of motions 

space - Lime be replaced by (b/) and (d) . 

• 
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I 
(b ) Thei"B is a space- liice hyper surf ace !1 3 . , . ' 

ir1 "".:1ere 

three independent vector fields such thlit 

i 9 01 ' j 1Z x.°' bC.. xl; hcd. e 
f?3 one homoGeneous space 

·--
section . 

on . ·ihat . is , therP-

(d) 'I'here exist equations of stat;o such that the 1.Jaucl1y 

H1 develoument of - is determinate . 

Then succeeding surfaces of constant 

are and. much the same proof can be siven t::ict vu.ere 
I 

are no models satisiying (a) , (b) , (c) , (d) . 

Th0 only property of perf cct fluids that has been 

i11 the a ·oove nroof is ·that they have well defined f loi:1-li1:cs 

intersection of v-1hich implies a physical .=ingulcL.Ci ty . Obv: Jusly, 

however , proper·ty will be possessed by a much ::ore 

clcss of fluids . For t hese , \•Te define the fl ov1 vector as 1..:1 .. : 

time - like eige11vector (assumed unique) of the 

tenaor . •.:.•hen \-Je can reolace condition (c) on tl1e nature of 

tl1e matter b;y· the mu c h \'lea..."l{er condition ( e). 

(e) If the model is singularity- free, the flow - lines -f Q">"•-:"" 
- .L. --· 

<..-\ s;nooth time-like congruence \-Jith no poi11ta -.:iLh 

a line t.:1--ough e a ci:l point of space-time. 

Conci..i tion ( e) v1ill be satisf:Bd automat ically if conditions 

(a) and (c) are . 



'l'his proof rests strongly on the ;:ssumption of 

homogeneity 111hich is clearly not satisfied by the physico..l 

universe though it may hold on a large enough acule . 

however it seem to indicate that la.r.'ge scale e.f'fects 

like ro·t;at ion cannot preve11t the singularity. 

It is of interest to the nature of the 

i n the nomogeneous anisotropic models since thJ s is more 

likely to be representative of tae general case than that of 

models . It seems that in general the collapse 

.!ill be in one direction., 5 that is, the uni verse \-:ill co::..ls.pse 

down to a 2- surface . Near the singularity, the volume will be 

proportional to the time from the singularity irrespective of 

the precise nature of the matter . It also appears that the 

nature of the particle horizon is different . There will be 

a particle horizon in every direction except in which 

the collapse is taking place. 

4 . in Inho!o3eneous 

and Khalatnikov6 claim to have proved that 

general solution of the field equations \vill not have a 

sinsularity. Their method is to contract a solution with a 

singul&rity which they claim is representative of the 

general solution with a singularity, and then show that it 

has one fewer arbitrary function than a fully general solution . 

• 



CleurLy tt1eir whole proof rests on whether their solutiun 

is fully representative and of "cl1at ·they :_;ive no proof . 

Indeed it would seem that it is not representative since it 

involves collapse in two directions to a 1- surface 

in general one woul d expect collapse in one direction to a 

2- surface. In fact their claim has been proved false by 

Penrose? for the case of a collapsing star using the notion 

of a ' closed trapped surface ' • similar method v1ill be 

used to prove the occurrence of singularities in 'open ' 

universe models . 

5. ' Onen ' ' Closed ' Models 

The method used by Penrose to prove the occurrence 

of a physical s i ngulari ty depends on the existence of a 

non- compact Cauchy surface . A Cauchy surface will be taken 

to mean a complete , connected space-like surface that 

intersects every time- like and null line once and once only . 

Not all spaces a Cauchy surface : exalliples of those 

that do not include the plane- i,.1ave metrics , 8 the Godel model ,·9 

and N. U. T. s pace:o However none of these have any p'iysic.:l 

significct.i."1ce . Indeed it v1ould seem rea sonable to deznand of 
• 

any physically reali st i c model that it possess a Gauchy 

surf ace . If the Cauchy surf ace is compact , tl::1e model is 

commonly said to be ' closed '; if non- compact , it is said to 
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I 
j 

l 

. 
I 

·to be ' open ' • The surfz.ces , t = constant, in the ... 1.obertson-

•
1ialker solutions for normal matter a.re exanrples of Cauchy 

surface:..> . If K = - 1 , they have negative curv<J:ture and it is 

f'requently stated that they are non- compact; . :l'his is not 

necessarily so : ther e exist possible for which 

they are compact . However , tt1e f ollo\vin;s statements may be 

made about the topology of the surfaces t = constant . 

If the curvature is negative , K = - 1 , the universal 

covering space is non- compact and is di ff eo111orpl1ic to :s3 . 

other topology can be obtained by of 

points . 'l'hus any other topol ogy \·.;ill not be simpl;>r connected. 

and , if compact , must have elements of infinite order in tJ:1e 

fundamental t;roup . l<"u r t her if compact , they can r1ave no 

f t . 12 group o mo ions . 

If tl1e curvature is zeI'O , I\ = 0 , ·the universal coverint;; 

3 rh · h · bl t 1 - · 1 3 I.L.co space is ..£ • ' e r e a r e eig teen possi e opo 0 0 ies . 

compact they have a G3 of motions and Betti numbers, 31 - 3, 
B2 = 3 . 12 

If the curvature 
space is s3 . 

Betti numbers are all 

is positive , K = +1 , the universal 
Thus all topologies are compact . 

12 zero. 

Since a singulari ty in the universal covering space 

·.i'he 

implles a singularity in the space covered , Penrose's mGthod 

is applicable not only to spaces that have a non- compact Cauchy 
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surface but also to spaces whose universal covcrins sDace 

has a non-co:-:-ipact Cauchy surface . 1.i.
1hus it is applic::;.ble to 

models which , at the present time , are homogeneous and iso-l tropic on a large scale with surfaces of approximate homo-

geneity which have negative or zero curvuture . 

6 . ·11he Closed '11rapped Surf&.ce 

Let r3 be a 3- ball of coordinate radius r in a 3-surf 

a3 (t = const . ) in a metric with K - O or - 1 . 

Let qa be 1Jhe outward directed unit normal to T2 , the boundary 

of 'i13 , in H3 and let Va be ·the past directed u!li t normal to 

H3 . Consider the outgoi ng 

intersect T2 orthogonally . 
be: -- , ( v . - .. l o ... b 

family of null ceodesics which 

At f , tl1eir will 
q ()._ I h 1( b +- /; {: b) 

I 

\.,rhere fO'- to.. are unit snace- like vectors in H3 orthot;ons.l 

to q a and to each other , , 

'1 (Jj_. I I ;- kt Q. -] -i;teref ore f ... - -- - K r -R '3 

If JV-. 1 0 and 1( = 0 or - 1 , by taking r large enough, vre raa.y 

make1 negu.tive at T2 • TheI'efore , in the lan3uage of Penrose, 

T2 is a closed trapped sur face . 

.;mother way o.f s e,ei ng this is t o consider the diagram 
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in which the flow- lines are drawn at their proper 

distance from an ooserver . 'l'hey all meet in tl1e 

at t = J . lf the past light cone of the observer is drawn 

on ·tais it initially diverges from his world- line 

) . It reaches a 

and then converges again to 

raaximurn pi"oper radius ( (:> 

the sine;ulc.ri ty ( f > () 
.:. 0 \ ) 

) • 
1.L1he 

intersection of the convergin3 li0ht cone and the surf uce 33 

gives a closed trapped surface T2 . If the red- shift of 

3C9 is cosmological then it will be beyond 

poi11t e 0 if \·Te are living in a Robertson- .ialker type 

universe with normal matter . However, tae assumptions of 

homogeneity and isotropy in the large seem to hold out to the 

dis·tance of 309 . 1.rhus the.re is tjOOd reason eo believe th'-L 

our universe does in contain a closed trapped 

It should be pointed out that the possession of a closed 

trapped surface is a large scale property that does not 

on the exac-t; local metric . Thus a P.J.od.el thr t had locc..l . .. irre0uJ..-

ari ties, rotation and shear but \vas similar on a larse scc:.le 

at the time to a Robei"tson- 'l"Jallcer model \-.rould have a 

closed trapped surface . 

Following Penrose it will be shown that space- time has 

a singularity if there is a closed trapped surface and : 

(f) E); O for any observer with velocity 

(g) there is .a global time orientation 
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I 

(h) the universal covering space has a non- compact 
3 surf ace H • 

Assume space- time is 

3et of points to the past 

singularity free . Let F be the 

of H3 that cun be joined by a 

smooth future directed time- like line to T2 or its interior 

T3. Let B3 be the boundary of F4 • Local cons:iierations shO\'! 

that - T3 is null where it is non- 8ingular and • lS 

t;;enerated by ·the outgoing family of past u.irected. null geodesic 

sec;ments v1hich have future end- point on T2 and past end- point 

·.!here or before a singular 

conbruence . at T2 , 

point of the null geodesic 

the convergence, f > 0 and 

by (f) , the conversence must si11ce Ro..b L lb 0 

become infir1i te vii thin finite affine distance . '..L1hus B3 - r.r3 

will be compact being generated by a compact family of cown&ct 

seg1ne11ts . 1ience B3 v1il l be compact . Penrose' s metho·i is 
7, 

tnen as follows: approximate B 7 arbitrarily by a 

smooth space- like surface and project B3 onto H3 by 

normals to surfuce . 6ives a many- one 
. ' . 0ince 

must be compact . Let ci(Q) be 

B3 is compact , i·ts image B3¥ 

the number of points of B3 

ci( (\)) . 
will change only at the ma1ped to a point q of I-13 . 

7. 
intersection of caustics of the normals \vi th H7 • l\1oreover , 

by continuity can only change by an even number . 
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• 

• 

since this . 
l S the identi·ty D-i'1.d 

is a contradiction, thus the assumption 

is non- si11gular mu s t be false . hl1 al ternv..ti ve proceedure 

which avoids t11e sliGt1tly questionable step of approximating 

B3 by a space-like surface i s possible if we adopt condition 

( e) on the nature of the mu.tter , tl1en B3 may be proj 

continuously one- to-one onto H3 by the flow- lines . 

again l;eads to a contradiction since B3 is compact and H3 

is not . 

In tbe proof it bras to deQand that 

£' b& a Cauchy surfac8 of B' might not 

have been projeoted onto li3. We will define a somi-Jauchy 

'iur:faoe (o,G,s) as a cottlplo·t;e connected epace- lika eurfc.ee 

i;h.gs,t eve:I.'Y tii:t1@-lilce iiind null line at 1t1:os·t O"i.1i0ie. 
7. 

s . C.s .I? will l/Q a c;'3ucti.y · sur:f'ace for. ;oi:Q.t• i'.tear it, 

is:!:&i5 is, it· will intersect ove;;:-y anC. i1ull l:i.nie 

tl1rou,;:1 these points • nOV.' OVOr, further &>1.,,_y lihoro 1Tiay be 

?e! iono for whieh it ic not a Gauohy curfaoe . Let f 4 b -c the 

of uoints for which H3 is a Cauchy su.rf-.i.c" e..nC.. lot <Ql b 

tac boundary of those points. Q3 . f 
' l: it oxis·l;s, will -oe 

oallod "bhO Q!:U;Cl?:Y: liori z.on rel a ti 1re to H3, CQ> fft\!:18is 1': 8: 

. 
•"blrfaoo, :1/u;p·i;hO.PHl.O:Fw if condition (f) boJ..de tho Rl:ill e@@&@di&C 
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at lo&ot one sxnsul&r tthien 

thftiet thoir iitUet ho - - A • + 1 · - · .... · v DOUnGou ln one ttirccuion. 

it of s • J, s "ff·ith o. Cauchy l1origon is a 

· ou:efaec of eons·sant negative our..,lature ooepletel5• 

\titl1in tac nu±l eone of the oeint in r "ia1 S 1 • 11 n:o·:; .<:i space. 

B:ull oonc forao the tJauohy horiso:a. 

88Bditioao (o) and (g) hold, than a model 'iith a 

o. ·G. s, EE3 must h th t ± lt 4 4 t: 1 
- - -- ----8:\,..eeepo ogy: • . 

'/ l.j there ''ere a rc5ion V through which taerc were 
3 I l t/li __ no flow lines iatcrseoting S , then the boundary of -

•if",Y§t be a t:hme-liko surfaoe t;onerated 1)y floi·:=lines ri·hioh 

intersect H3 , Proceeding •long thoso !lo1.i:-linoi;i in ·1;;1;;i,,e 
-d ireotion of their intorsoction with H.?, ¥JO :Q:Uat reac a 6.jji 

V3 does not intersect 
. , l • . I of tho gon@rator I • 

&:it .. the -0xistenco of onO.-point contradicts (o) ii; 

a singularity of tho i'lo·.x-.lin8 cone;ruonce, '?hue 1/ ,, 
:t'lus b be em1> b;y and ewer;, point has a fle;1 line ti'lrousa i-V 

intercoeting :a3, Thus wo hd.'l9 a hoi:aoomorphise of the space 
0 b ,.., f) 1 :.,/ , C. I . h • • , · + vv tt - uy assigning every 

6:S:o=6anoe along the flow-lino from 53 and 

of iho s ·Jae e i ·t.a 

tho point of 

s·eetion of li:1c flo\11-line •11ith H3. It oan also be shoi. .. n ·that 

• 

• 

• 
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..1.x>. +.hl:. s e""'"ne r-1 3 .._ ' ,, =rx vn-- -t ffiUSv 00 a v&Uehy GUPfaoe, M'or uuu •OcJ.1€ ' .... 

"6t1ere '!'fore a Cauohy horizon · (((-1 • this c&n ' . 
eacb !lo•·r=line a.t n1ost once . there is a L±OX00-

FBorpl:iistfl. of in"t;o · H? . "by ( e) every :floli!=l :i.ne 

.w:ust .cQ3 . Tnus is -:o H.3 and. is 

€01ripaot. If condition (f) h.olde every null 3Bno:» .to:F-

3 of fi&s· at least one end point . Tnio must be in the 

O.irectic-.1* 6.way from H3 in tho direction to\tJards W 
aenerator auo=6 be unboundsd. m , . a . iniso·n·ever l:O ire,"}ossiole 

« nun me • 

8 . in ' Closed ' -. . universes 
. 

is a singularity in every model which satisfies 

(a) , (g) and (i) . 
(i) •1ihere exists a compact Cauchy surface H3 \·1l1ose . . 

lllll t: 

3 
normal has positive expansion everywhere on h • 

PROOF 
the proof it is necessary to establish a of 

le111mas. 11.Ssume that space-time is sin6ulari ty-free . 'I'he 

follo;,.1ing result is quoted v1ithout proof , it l)e 

derived from lemmas proved in reference 11 . 

if ? and ci,. are conjugate points along a geodesic ( 

and 'X is a point on r not in fCj... then X' must have a conjugc-.;.te 

point in f} ·. 



f 

iln corrollary is that if q is 

e lon3 r conjugace t o p 

conju5ate points in pq 

and y • • 
J.S J.n pq then • y a.G..3 no 

• Also since the result that x 

h o.s a conjugate point in pq ca11 only depe11d on the values 

of C\. in pq, any irrotational 5eodesic congruence includin5 
M f\ 

the geodesic r must have a sin.t;ular point on t in pq. 

1.rhus if q is a point on f"i3 and ( is the geodesic normal to 

M3 tl1rough q , then a point conjugate to q alons · f canno·t occur 

until after a point conjugate .to M3• 

If 113 is a complete connected s1)ace-like surf o.ce \·1i1icli 
. 

intersects every time-like and null line from a i)oint p, '::e 

may define a function over M3 as the square of the geodesic 

f distance from p which i s taken as positive if the seodesic is 

time-like and negative if the geodesic is space-like. call 

this the world function CY \vith respect to p. Ji'or c l osed 

( 

\ 
l 

set of v<:,lues o :?O , wiJ.l 

general mult1 i-v<:1.lued) function over 

be a 
11." 3 l I o 

continuous ( in 

A time-lil{e geo ... c sic 

r from p will be said to be critical if it corresponds 
C /.A 0 I i. :. . 3>) to a value of <5 for \vhich u, AA • L.. •, 1 

,, .. t, 

v1here , € f'J.. are three independent vectors in !'13. 
... 

a critical geodesic must be orthogonal to M3. A geodesic 

• 



which is critical will be said to be maximal if it corresponds to a 

local maximum of • 

Lemma 1. 

A geodesic cannot be maximal for a smooth M3 if there is a 

point X conjugate to M3 but no point conjugate to q on "'f in qp , 

where q is the intersection of ! and M3 . 

Let f and g be the Jacobi fields along which vanish at X 
m m 

and f respectively. They may be written 
n 

f = A(s) f/q , 
• m mn 

n 
g = B(s)g/q • 
m mn 

Then h1 ( <{, J J ff¥ I x; °r c/..s i r n 
must be positive for 

n 
any h since if it were negative for any h by taking a = ... b h h 

mb m n 
beyond q , it would be possible to have a point y on 6 beyond q 

conjugate to before a point conjugate to p • If it were zero 

X would be conjugate to f . This shows that the surface at q 

of constant geodesic distance from p lies nearer to f' in every 

direction than the surface o£ i of constant geodesic distance 

)( does . Since X is conjugate to M3 the surface at q 
f constant geodesic 

direction than M3 

distance from p lies closer to Jiil in some 

does . Hence '6 is not maximal . 

1 

from 

of 
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p ,u :;.t 'be ":Q o •it i £ . . .J.. '-:> t *· But a•-
4 ,. G.O l:Ill: bO (.,( 0 I t . i f 

... (]. .. g j s g f &' < 0 ' , -
A• A .!JA 1\ MO lb A M 7\ 

cannot be positive definite .;:.t a. -
fcare there m1Jst be somq dj recti on 

(v\ t< for \,zbi c:b 
I\. d 

&.nd P.*t 1\. vv 
fi 1/ 4 K re i.2 .,. 

1\\: • Q , rv A • I I\. "' ' 

10 2 unit tangent vector of tbc congrueLoa 

of ooncbant JCodccic distanco from p lies aloser to p thaB: 

ourfaee M3 6occ, f is not 
7 

If r·1./ is compact; or if the intersection of all . . , ... 
"C ime- _ll<e 

and null limes with M3 is 6' a1ust have a rna:x:irau: .. 

value, ·c hus there must be a normal to M3 through p 

• 'i-ie use this to prove another lera:tiG.. • 

.Leinma 2 

If p lies to the future (past) on a time-like ·:·eoO.esic . .:> 

( throue;h q, beyond a point 

exists a compact Cauchy surface 

z conjugate to q ,and 
7. 

II7 through q, then there 

l 1nust be o..nother time-like geociesic from p to q longer tl1.a1-_ r . 
Let y be the last point conjugate to q on t before p . 

Let x be the nearest point to p conjugate to p in pq. Let 

r be a poin·t in yx. Let K3 be the set of uoints which have • 

a future (past) directed geodesic of lensth rq from q. 
l -

• 
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3 K will be a soace- like throuGh r . - t .Le i!' 

be the set of points •..vhich have at one fu\,ure 

directed Geodesic from q of length creater than rq . ·1·hen the 

past (future) directed 

H3 which is not in F4 , 

be the int•ersection of 

Since p is in FLJ- o..11d since every 

t i me- like and null line from p intersects 

3 T.et , ,,3 they must also intersect J • _ 

J3 and these lines . Bince ri3 is 

compact , L3 must be compact . 8onsider the function Cf' \·1ith 

respect top over K3 . Its maximum must lie in the compact 

region L' . But , by the previous lemma ( is not 

1uoreover, local considerations show that a 

the surf ace J3 cannot be a max imum of C> 

singular ooint in 

• 'fhus tl1e 

n1aximum value of cr- must for a ... :.:eode sic from p ort:.J.o-

to L3 . Thi s must also be a goedesic from p to q of 

length than ( • 

Us tt1ese two lemmas the theore1a may be - . urovea . 0111ce 

the future (p•-st) directed normals to H3 . converging 

eve.._"Y'·lhere on H3 , there must be a point • COnJU(?;O.te to H3 a 

finite distance a l ong eacn future (past) directed geodesic 

nor1nal . Let be the maximum of these distances . Let u .. 
( be a point on a future (past) directed geodesic normal at 

a distance than • Consider the function G v1i·ch 
• 

•. 



. 
l 

• 

' i. 
l 

l 

• 

respect to p over the compact surface :13 . be l-he 

from p normal to H3 at the point q , its 

maximum . 1l;here must be a point conjugate to li3 along A in en . 

But if there is no point conjugate to q along qp , then 

cLJnnot be maximal by the first lem!;1a . If however there 

is a point conjuGate to q in qp, then there must be 

·..:. hus 
. 

a from q to p by the second lemi.a. 

is not the seoa.esic of maximum leng"t;h from H3 to p . ·- nis is 

a contradiction which shows 

the spc..ce \vas non-singular must be false . 

Tt1is proof could also be used show the occurrence 

of a singularity in a model vJi th L. ·non- compact Cauchy 

l)I'OVided t tiat tl1e expansion of its normo..ls was bounded av:ay 

from zero and provided that the intersection of the Cauchy 

surf ace \vi th all the time- like and null l ·ines from o. point 

v¥as compact . 

• 
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